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COMPUTATIONAL SIMULATION OF ELECTRIC FIELDS
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ABSTRACT

A numerical technique is presented for computing the potential distributions surrounding power
transmission and distribution lines of complex geometry. The technique employs a finite difference
solution using boundary-fitted coordinates. A newly developedfinite difference solver code is coupled with
the existing EAGLE grid generation code to yield a system capable of solving for the electric potential
and field distributions surrounding complex configurations. A code validation example is presented which
consists of a sphere-to-ground electrostatic solution. Sample results are also presented for a distribution
line model.

INTRODUCTION

The voltage level at which a power transmission or distribution line fails (the critical flashover
voltage) is dependent on the physical configuration of the line under test. The cross-sectional geometries
of lines in use today vary widely given various supporting structures, insulators and conductors. The
critical flashover voltage of a newly-designed configuration is commonly determined through construction
and experimental testing. In some cases, attempts at reproducing experimental results fail because the arc
traverses different paths to ground from test to test. In the design of transmission and distribution lines,
prediction of the failure point is often accomplished by comparing the new configuration to a
geometrically similar configuration which has previously been tested. A more effective method of
predicting the failure point of a given configuration is to determine the potential and field distribution
through computational means. This technique would greatly enhance the design of high voltage
transmission and distribution lines by providing the designer a tool to investigate changes in the insulation
properties of a given line due to minor design modifications without expensive experimental tests. An
accurate plot of the potential and field distributions surrounding the line would yield insight into the
maximum allowable voltage levels and the phenomenon of multiple paths to ground from failure to failure.
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Computation of the electric potential distribution throughout some arbitrarily shaped two-dimensional
or three-dimensional region involves the numerical solution of the governing partial differential equation.
Since high voltage transmission and distribution lines carry either direct current or low frequency (60 Hz)
alternating current signals, the potential distribution for breakdown calculations may be determined
assuming no time variation. Under static conditions, the potential distribution is governed by either
Poisson's or Laplace's equation, depending on the distribution of free electric charge in the region of
interest [1]. The periodic placement of supporting structures along the length of any transmission or
distribution line makes the problem of modelling such a configuration inherently three-dimensional.

The representation of the surface boundary conditions is a critical factor in the accuracy of the final
solution to a given partial differential equation. The accurate numerical representation of surface boundary
conditions for a transmission or distribution line with a complex supporting structure is by no means
trivial. A particularly effective technique of accurately describing boundary conditions on an arbitrarily
shaped body is through boundary fitted coordinates (numerical grid generation) [2], [3], [4]. A curvilinear
coordinate system is defined in the region of interest such that all boundaries in the region are coincident
with coordinate lines. The coordinate system describing the physical region is then transformed into a
fixed rectangular computational field defined by a square mesh. The resulting system of finite difference
equations in the transformed or computational space consists of simply described boundary conditions.
The equations to be solved in the computational space are more complex than those in the original
physical space, but the accuracy of the solution is enhanced through the precise representation of the
surface boundary conditions in the computational space. The finite difference solutions to the equations
in the computational space are obtained using only grid points so that no interpolation between grid points
is required. The grid point placement is dictated by the field variation in the region of interest. Grid
points are concentrated in regions where the field variation is rapid while widely-spaced grid points are
used in regions where the field is near-constant.

The electric potential distributions computed in this research were obtained using a newly developed
solver code coupled with the existing EAGLE grid generation code [5] to yield a system capable of
solving for potential distributions surrounding transmission and distribution line configurations defined by
complex geometries. The grid system in the region surrounding the transmission line model of interest
is constructed using the EAGLE code. The finite difference method is utilized to solve the governing
partial differential equation over the domain of interest subject to the appropriate boundary conditions.

FORMULATION

Given some static distribution of electric charge, the resulting electric scalar potential (V) may be
determined as a function of position by solving the appropriate boundary value problem. The differential
equation which describes the potential distribution in a region of (free) electric charge is Poisson's
equation given by

V2V=_P (1)

where V2 is the Laplacian operator, p is the electric charge density (C/m3) and e is the permittivity (F/m)
of the medium. In a region where no free charge is present, Poisson's equation reduces to Laplace's
equation:

V2V = 0 (2)

The solutions to Poisson's and Laplace's equations are obtained by enforcing the appropriate boundary
conditions to the general solution of the respective differential equation. These boundary conditions may
be expressed in terms of the scalar electric potential, the vector electric field E (V/m) or the vector electric
flux density D (C/m2). The static electric field is defined in terms of the electric scalar potential by
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E = -VV (3)

where V is the gradient operator. Thus, boundary conditions described in terms of the vector electric field
may be related to the electric scalar potential using Equation (3). The general equations which describe
the behavior of the electric field and flux across a surface discontinuity are well known [1,6,7] and are
given by

AX[E 2-E,] 0 (4)

and
A. [D2-D,]=p 8  (5)

where (E,,D,) are vector quantities in region 1, (E2,D 2) are vector quantities in region 2, and A is a unit
normal to the surface which points into region 1. The vector electric flux density is related to the verLor
electric field by

D =C (6)

The boundary conditions in Equations (4) and (5) can be related to the scalar potential using Equations
(3) and (6) which yields

Ax [(VV),-(VV) 2 ]=o (7)

and

A.[ 1 (VV)I- C2 (VV) 2 ]=PS (8)

Equations (7) and (8) represent the general boundary conditions for the scalar potential across a surface
discontinuity.

In cases where an isolated conductor is located in an applied electric field, the resulting conductor
potential is unknown ("floating" conductor). When a conductor is placed in a static electric field, a charge
distribution is induced on the conductor surface which produces a zero-valued electric field everywhere
inside the conductor yielding a constant-valued potential throughout the conductor. The total surface
charge on the conductor remains unchanged given any applied electric field distribution. From Gauss'
Law, the integral of the normal component of the electric flux density over the outer surface of the
charged conductor (S) yields the total charge on the conductor such that

f Dds =Q (9)
S

where the direction of ds is an outward pointing normal (ds=A ds), ds defines the differential surface
element on the conductor surface and Q is the initial value of total charge on the conductor. The integral
defined in Equation (9) may be expressed in terms of potential by relating the electric flux density to the
potential which yields

fe [ i(VV)]ds -Q (10)

where the dielectric surrounding the conductor is assumed to be isotropic.
Assuming the transmission or distribution line model is composed of perfect conductors and lossless

dielectrics, the regions of interest with regard to potential and field computations (external to the
conductors and throughout the dielectrics) are charge-free. Thus, a solution to Laplace's equation is
required. Given a curvilinear coordinate system defined by (41,42,43), the Laplacian operator in non-
conservative form [2] is given by

33 3V2 g- iEV44 + F, ( ell V. )
i-I j-1 k-1
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where the subscripts on V denote partial derivatives and g" is the contravariant metric tensor. The
elements of the contravariant metric tensor are defined as dot products of the contravariant unit vectors
(normals to the curvilinear coordinate surfaces denoted by 4) which yields

g ii=41.4jl (12)

The Laplacian term in Equation (11) may be written as

V = g •Pk (13)

where Pk is a control function evaluated in the course of the grid generation and is then available to the
Laplace solver as coefficients with fixed values at each grid point. Laplace's equation can now be written
as

3 3 3
E E ÷ E g, P, =_o (14)
i-i j-I k.1

The first and second order derivatives found in Equation (14) are represented by central difference
approximations and the overall equation is solved using the successive over-relaxation (SOR) iterative
technique.

Four basic boundary conditions on the scalar potential are required in the formulation of the numerical
model: the Dirichlet boundary condition, the Neumann boundary condition, the material interface
boundary condition and the floating conductor boundary condition. The Dirichlet boundary condition is
characterized by a scalar potential which is constant on a particular boundary. The surface of all
conductors are defined as Dirichlet boundaries since they represent equipotential volumes. The application
of the Dirichlet boundary condition is trivial using boundary-fitted coordinates. Scalar potential values
are fixed at grid points on the specified surface (4'= constant) and these values are preserved throughout
the iterative process.

The Neumann boundary condition is defined by a zero-valued normal derivative of the potential on
a given boundary. The Neumann boundary condition is applied at the outer boundaries of the volume
enclosing the transmission line model. The normal derivative to the coordinate surface on which E' is
constant is given by

3

Vi.av = i
E g ii gV4 (15)

c~n i-i T

which yields
3

E g'V4, (4'=constant) (16)
j-1

as the Neumann boundary condition on the given surface.
A floating conductor is an equipotential volume but the conductor potential is an unknown value.

Thus, the initial charge condition defined in Equation (10) must be coupled with the Dirichlet boundary
condition for a floating conductor. Such a boundary condition can be enforced by integrating the normal
component of electric flux over the conductor surface or over some surface enclosing the conductor. Both
methods of integration produce similar results but the structure of the corresponding grids are totally
different. Integrating over a surface enclosing the conductor allows for a multi-block grid with a smaller
number of blocks than integrating over the conductor surface. The advantage of using a small block
system is to obtain better control of the grid distribution in the regions of interest and to reduce the 1/0
overhead needed to transfer iterative data from block to block.
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The material interface boundary conditions are applied at dielectric-dielectric interfaces and conductor-
dielectric interfaces. The tangential electric field boundary condition of Equation (7) is implicit in the
formulation since the scalar potential is assumed to be continuous across the boundary. The normal
electric flux boundary condition of Equation (8) on the coordinate surface where 4' is constant may be
stated as

F, g E PV4,=p, (17)

where g" and kl' are the contravariant metric tensors evaluated on the grid at the interface in region 1 and

region 2, respectively.

COMPOSITE-BLOCK GRID STRUCTURE

The curvilinear coordinate system mentioned in the previous section is constructed using the EAGLE
grid generation code. The EAGLE code is a composite (multi-block) algebraic or elliptic grid generation
system designed to discretize the domain in and around any arbitrary shaped three-dimensional region.
The concept of the composite-block structure is described in detail in [5].

Fundamental to the curvilinear coordinate system is the coincidence of some coordinate surface with
each boundary of the physical region. The physical region of interest in divided into contiguous
subregions (interfacing hexahedrons), and each subregion can be transformed to a rectangular block in the
computational space, with a grid generated within each subregion. Each subregion has its own curvilinear
coordinate system irrespective of that in the adjacent subregions. Each subregion, defined by six generally
curved sides, is trasformed to a rectangular computational region on which the curvilinear coordinates
are the independent variables. In principle, it is possible to establish a correspondence between any
physical region and a rectangular block in the computational space, but the resulting grid may be too
skewed for a complicated geometry. In such a case, the given physical region must be subdivided into
smaller blocks until the resulting grid satisfies the user-defined grid criterion with regard to skewing.

The general curved surfaces bounding the sub-regions in the physical space form internal interfaces
across which information must be transferred. In the computational space, the information must be
transferred from the side of a given rectangular block to the corresponding side of the adjacent block.
These two sides of the adjacent blocks correspond to the same physical surface. The interface is treated
as a branch cut on which flie function value is solved just as it is in the interior of the blocks. The
interfaces of the blocks are not fixed, but are determined by the solver. The most straightforward
technique to employ is to provide an extra layer of points surrounding each block. These surrounding
points represent points across the given interface just inside the adjacent block. This relationship is
maintained throughout the iterative procedure. The governing partial differential equation is solved by
point SOR iteration using a field of locally optimum acceleration parameters. These optimum parameters
make the solution robust and capable of convergence with strong control functions.

CODE VALIDATION EXAMPLE

An analytically solvable electrostatic problem is attempted in order to validate the code. The problem
considered here is that of a conducting sphere over ground. The sphere over ground problem is solved
numerically and compared with the equivalent problem of two isolated conducting spheres. For the two
sphere problem, the electric field along the line connecting the sphere centers may be expressed as an
infinite series using images as given in [8]. This problem has similar characteristics to the power
distribution line problem in that one is interested primarily in the electric field and potential in the region
between the conductors while these quantities are less critical away from this region. Also, the outer
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boundary of the sphere-sn-gro,,nd problem has the same general characteristics of the
transmission/distributior, line problem with a ground plane on the floor of the region and the remainder
of the outer boundary on which the potential is unknown.

The geometry of the sphere-to-ground problem is shown in Figure I where D is the sphere diameter,
S is the spacing between the sphere surface and the ground plane, and B is the dimension of the cubical
outer boundary. The particular geometry chosen is D= 100cm, S=50cm and B=20D. Note that the x
coc ,"aate origin is located at the sphere center and extends downward to the ground plane. Thus, the
domain of interest for field comparison purposes is 50cm:x< 100cm. A three block, h-type grid is
generated in the given volume of interest with a total of 88,263 grid points. Comparisons of the computed
electric field with analytic results are shown in Figures 2 and 3 using two distinct outer boundary
conditions. A constant potential of V=O is assumed on the ground plane and on all outer boundaries for
the first boundary condition (Figure 2). For the second boundary condition (Figure 3), the ground plane
potential is again assumed to be V=0 but the Neumann boundary condition is enforced on the other outer
boundaries. In both cases, excellent agreement is found between the analytic and computed results.

The uniform V=0 outer boundary condition described above is viable for problems involving
conductors of limited extent in all three dimensions such as the sphere-to-ground problem. However, for
problems involving conductors which span the entire spatial domain in one or more dimension, such as
a transmission or distribution line model, the constant outer boundary condition is inadequate and the
Neumann boundary condition may be applied. The Neumann boundary condition, which forces the
computed equipotential contours to lie normal to the outer boundary, yields appropriate behavior in the
vicinity of the ground plane where the equipotential contours "follow" the ground plane. Negligible errors
in the electric field are experienced in the regions of interest by choosing the outer boundaries sufficiently
far away as shown in the sphere-to-ground example.

B

D

4x

ground plane S

Figure 1. Sphere-to-ground geometry.
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Figure 2. Comparison of the analytical sphere-to-ground electric field
with computed results given V=O on all outer boundaries.
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Figure 3. Comparison of the analytical sphere-to-ground electric field with computed results
using the Neumann boundary condition on all outer boundaries excluding the ground plane.

POWER DISTRIBUTION LINE MODEL

The critical flashover voltage of a typical distribution line configuration was studied experimentally
by Jacob, et. al. in [9]. The distribution line model shown in Figure 4 is a simplified version of the
experimental configuration analyzed in the aforementioned study. Insulators, crossarm braces and
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mounting hardware components have been omitted in the distribution line model to simplify the geometry
of the resulting grid. A detailed description of the distribution line numerical model is given in Table 1.
Conductors A, B and C represent the three high-voltage conductors (phases) while conductor N is the
neutral wire and conductor G is the vertical ground wire.

Se'. eral configurations of charged, floating and grounded phases were studied experimentally in [9].
A single phase was charged in order to measure the critical flashover voltage of the phase-to-ground and
phase-to-phase failures. Two of the models considered in [9] are analyzed here and designated as model
#1 and model #2. For model #1, the B phase is charged with the A and C phases floating. For model
#2, the B phase is charged while the A phase is grounded and the C phase is floating. The ground plane,
conductor N and conductor G are held at 0 volts for both models. The potential of the charged conductor
is assumed to be 1 volt for both models.

The volume enclosing the three-dimensional distribution line model is defined by (-400" < x < 200"),
(0" < y < 1200") and (-90" < z < 90") with the axis of the pole located along the y-axis. A four-block
grid system is constructed with the grid points distributed throughout the volume as illustrated in Figure
5. Note that the grid points are concentrated in the region of interest surrounding the conductors in the
vicinity of the pole. A total of 96,525 grid points were used to determine the three-dimensional potential
distributions: 75 in the x-direction, 39 in the y-direction and 33 in the z-direction. The computed
potential distributions are plotted over surfaces defined by k=constant where k is the grid point index in
the z-direction (k=0 defines the plane where z=-90", k=33 defines the plane where z=90"). Due to the
grid structure, the surfaces defined by k=constant are not planar in the vicinity of the pole as shown in
Figure 6.

RESULTS

The potential distributions are computed for both model #1 and model #2 given the charged conductor
(phase B) is charged to 1 volt. The resulting potential distributions are plotted over constant k surfaces
in the vicinity of the charged conductor. The potential distributions surrounding model #1 for k=l, k=17
and k=19 are shown in Figures 7, 8 and 9, respectively. The corresponding potential distributions
surrounding model #2 for k=l, k=17 and k=19 are shown in Figures 10, 11 and 12, respectively. The
potential difference between the equipotential contours is 0.02 volts.

The initial "guess" for the potential values has a significant effect on the number of iterations required
for a prescribed accuracy. The first results were obtained by assuming a zero-valued potential at all grid
points as the starting values. A significant reduction in the run time was obtained for both three-
dimensional models by utilizing the corresponding two-dimensional results as the initial values on the
surfaces normal to the axes of the wires. The two-dimensional results are those associated with the same
distribution line minus the pole, crossarm and vertical ground wire. As expected, the potential distribution
of the three-dimensional model approaches that of the two-dimensional model as one moves away from
the supporting structure.

Several physical effects associated with discrete components of the numerical model have been noted
for the configurations which were analyzed. The effect on the potential distribution of a floating
conductor of small cross-sectional dimension is found to be minimal. Conversely, a floating conductor
can alter the potential distribution considerably if the conductor cross-section is of significant physical
dimension. The floating conductor represents an equipotential volume (surface) so that the resulting
equipotential contours in the surrounding medium must wrap around the conductor. The equipotential
contours on the end faces of the volume enclosing the three-dimensional model over perfect ground are
predominantly horizontal below the charged conducto-s since the contours must "follow" the ground plane
(equipotential surface). The effect of a vertical ground wire located on the supporting structure is to pull
the equipotential contours upward as one moves from the end face toward the supporting structure such
that the equipotential contours wrap around the ground wire. A large electric field is generated in the
vicinity of the ground wire as the equipotential contours crowd together. The effect of the wood pole is
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FIgure 4. Three-dimensional distribution line model.
(See Table 1 for detailed description.)

EnIoalsg V'olume - [-400"<Sx200", O"< y<1200", -90"<z<90"]

Ground P/. - Perfectly conducting ground plane (x-z plane)

Pole - Southern pine (v=3.5s.) 50 ft. pole, 10" diameter, axis
of the pole lies along the y axis

Crossarm - Southern pine (c=3.5e,) 10 ft crossarm,
120"x43"xS", centerline of crossarm is 44 ft. above
the ground plane

Coxductom - Each conductor is modelled as a filsnen,
A Phase - wire axis located at x=-56", y=541.25"
B Phase - wire axis located at xf-27", y=541.25"
C Phase - wire axis located at x=56", y=541.25"
Neutral (N) - wire axis located at x=5", y=595"
Ground wire (0) - wire axis located at x=5", z=O"

Table 1. Description of the distribution line model.
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Figure 5. Three-Dimensional Distribution Line Model Grid.

k=65

k=17

I

Figure 6. Cross-Sectional Contours in the Vicinity of the Pole.
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Figure 7. Model #1 Potential Distribution (k--l). Figure 10. Model #2 Potential Distribution (k=1).

Figure S. Model #1 Potential Distribution (k--17). Figure 11. Model #2 Potential Distribution (k=17).

Figure 9. Model #1 Potential Distribution (k=19). Figure 12. Model #2 Potential Distribution (k=19).
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to reduce the electric field as one moves from the surrounding air into the wood. This reduction in the
electric field is caused by the bending of the equipotential contours away from the air-wood interface
inside the wood region.

A more realistic model of the distribution line studied in [9] must include the insulators and associated
mounting hardware. Of particular interest is the metal bolt on which the insulator is mounted. This bolt
would be modelled as a perfect conductor and thus represent a floating conductor of significant cross-
sectional dimension. This floating conductor would be located in close proximity to a charged conductor.
The resulting equipotential contours surrounding the bolt would crowd around the equipotential volume
creating a large electric field. In such a manner, the effect of the bolt would be to alter the flashover path.
The present research forms the basis for further work in which the physics of the air breakdown process
are incorporated into the code in an attempt to actually predict the critical flashover voltage using a
computational model.

CONCLUSIONS

The potential distributions surrounding a three-dimensional distribution line model has been computed
by solving Laplace's equation throughout the enclosing volume. The partial differential equation solution
was carried out using a newly developed solver code coupled with an existing grid generation (EAGLE)
code. The code allows for a system model which consists of charged and/or floating conductors along
with multiple dielectrics. Given a three-dimensional transmission or distribution line model, using the
corresponding two-dimensional solution (the solution for the transmission line without the supporting
structure) as the initial value on each cross-section of the enclosing volume enhances the convergence
properties of the solution significantly. The actual potential distribution on the end faces of the enclosing
volume are found to be quite similar to the corresponding two-dimensional solution.
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ABSTRACT

This paper is concerned with the use of time- and frequency-domain methods for
computing the interaction of electromagnetic waves with simple and complex structures. An
example chosen for this study Is a cubic box with the top open. The Finite Difference Time
Domain (FDTD) method is used for computing time-domain responses to an electromagnetic pulse
(EMP), a Gaussian pulse, and a sine wave. Frequency-domain results are obtained by using a
moment method solution of the electric field integral equation (EFIE). Comparison is then made,
both In the frequency and time domains, on corresponding quantities using Fourier transforms.
Effects of various factors - the shape of the Incident waveform, discretization of the structure, and
Fast Fourier Transformation - on the CPU time and the accuracy of the solution are demonstrated.
Guidelines are established for obtaining an accurate response.

INTRODUCTION

Use of time-domain methods such as the FDTD for modelling a wide variety of
electromagnetic interaction problems has been increasing in popularity for a number of
years. Application of the FDTD method has included modelling very complex structures
such as the human body, microstrip and microwave structures, radar cross-section
computations and inverse scattering [1]. Response can be obtained directly in the time
domain, or in the frequency domain through a fast Fourier transformation (FFT).

Frequency-domain codes such as the NEC [2] and JUNCTION [3] have also been
extensively used for electromagnetic analysis of a wide variety of structures. Response
obtained in the frequency domain can be converted to time domain using an inverse fast
Fourier transformation (IFFT).

The choice between a frequency-domain method and a time-domain method for
modelling and analyzing a specific electromagnetic interaction is not always
straightforward. This paper investigates the effect of a number of factors on the accuracy
of the solution obtained. These factors include incident field wave shape, structure
discretization, Fast Fourier Transformation (FFT or IFFT), and computer time
considerations.
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PROCEDURE

A perfectly conducting cubic box with an open top is chosen for this study. A
plane wave with an EMP or a Gaussian or a sinusoidal waveform is assumed to be
incident on the open face of the box. The FDTD method is used to compute time-domain
fields at various points inside and outside the box for incident plane waves with different
waveforms. Frequency-domain response is obtained by taking a FFT of the time-domain
response. The frequency-domain responses thus obtained for various waveforms are
then compared with the response obtained by using the moment method implementation
of the electric field integral equation (EFIE). A de-convolution with the incident waveforms
results in a waveform-independent frequency response. This results in a frequency-
domain comparison.

For a time-domain comparison, the results obtained with the EFIE method are
transformed into the time domain using an IFFT. A convolution with the incident
waveforms results in the time-domain responses. These can then be compared with the
responses obtained by using the FDTD method.

Since both the FDTD method and the EFIE method have been well described in
the literature only a minimal description essential for this paper is given here. The theme
of this paper is the comparison of results obtained from the two methods, rather than the
intricacies of the methods themselves.

a. FDTD Method:

The FDTD method is a direct implementation of the time-dependent Maxwell's
equations:

2E + aE = V x H

at
(1)

aH
at

The finite-difference procedure proposed by Yee [4] positioned the E and H fields at
half-step intervals around a unit cell as shown in Figure 1, where E and H are evaluated
at alternate half time steps, effectively giving centred difference expression for both space
and time derivatives. For example, taking one of the three partial differential equations
associated with each of the vector equations above gives
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a a' x ay z
(2)

allz aEx aEyat- ( ax

Rewriting them in finite-difference form gives:

1 - t a(IJ, kA)
E"'(11, k+,/A) = 2 e(IJk÷,A) Ez (I k+11) +1 + at (IJ,k+Ih)

2 e (U ,k÷,Ma) I

at - ( Hyn*(i+1AJk+Ih)- H7"(i-'/hJk+'/)) +e (/J.,k÷112) a

+ (IJ, k. 'A) . a ( Hx7'A(Ij-i1,k+If) -HnA(IJ+%,k+ih))

2 8(IJ~k+11)

H•"j(/+1hJje.IA 1A) = H'-"(i1A+ 1AA÷i,/ (3
Ht - Ehy(EIi.)-J+lA) - E:(i./Ai.IO ) +

P(i*O/J+1/k.lO ax ( E,'(IJ.½/1.,I - E,(I.1J+./A,Ik)

where e, pl, and a are respectively the permittivity, permeability, and conductivity of the
specified coordinates in the lattice space. ax, 8y, and 8z are the cell dimensions, and
8 t i she ftne between 9sccessive calaions (i.e. the time step size). For a kidion F(x, y, z, t)
of space and time, F"(i,j,k) is Yee's notation for the value F(i8xj8y, k8z, n~t).

The complete system of six finite-difference equations then provides a
computational scheme: the new value of a field vector component at any point depends
only on its previous value and on the previous values of the components of the other field
vector at adjacent points. Thus at any given time step the computation can proceed one
point at a time for a single processor or several points at a time for a machine with
parallel processors.

While not the subject of this paper, the following comment on the FDTD algorithm
may be of interest. The finite-difference form (3) is obtained from (2) by the
approximation
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EE(x"',,zt) 0 (En'(ij.k) + .Iik)) (4)

This approximation is used in many FDTD studies (e.g. [1]). Others (e.g. [5], [6]) have
used the approximation

oE(x~yz,t) - oEn(iQjk) (5)

and obtained good results. The approximation (5), however, may lead to instability if

catle > 1 (6)

In this work, the approximation (4) is used. But even if we had used approximation (5),
because of our special treatment of boundaries for perfectly conducting bodies we would
still have had stable results. For a perfectly conducting body, we have a boundary-
checking algorithm that selects the boundary faces on which to set the tangential E-fields
to zero. This boundary is thus a "sharp" one of zero thickness and not a "fuzzy" one-
cell-thick wall with a huge o. For a dielectric surface, we use a "harmonic mean"
method to smooth out the boundary transitional effect. Another necessary key for stability
of the time-stepping algorithm (3) is that the time step at is chosen to satisfy

cat < ( + 1 + (7)

b. EFIE Method:

Referencts [7] describes a simple and efficient numerical procedure for scattering
by arbitrarily shaped bodies, using the moment method to solve the electric field integral
equation (EFIE). The object surface is modelled by using planar triangular patches (for
example, Figure 2). Because of the EFIE formulation the procedure is applicable to both
open and closed surfaces. The procedure has been applied to a wide variety of
electromagnetic interaction problems and has yielded excellent correspond.-,nce between
the exact formulations and other methods. In JUNCTION, the EFIE approach is extended
to analyze an arbitrary configuration of conducting wires and bodies. The algorithm
developed can handle wire-to-wire, surface-to-surface and wire-to-surface junctions. A
modified version of JUNCTION is used here as the "EFIE methodn.
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PLANE WAVE FORMS

In this study, the time-domain incident wave on a structure is a plane wave with
one of the following three shapes:

a. the nuclear electromagnetic pulse (NEMP) [8]

E(t) = Eo (8)1 + e(S÷P)t

with 4 = 5.126x 104 V m-1 , a = 1.027x 109 s-1, and J3 = 3.906x 10 6 s-1 (see Figure
3a). [Note this pulse has a peak value of 50 kilovolts per metre at 10 nanoseconds, a 10
to 90 percent rise time of 5 nanoseconds, and a decay time to half-value of 200
nanoseconds.]

b. the Gaussian pulse

E(t) = Eo e(9)

with Eo = 100 V m"1, and T = r/-c(m.8t), where 6t is the time step size and m is the
"pulse width" parameter: when t = m*8t, E(t) = E4/e = 0.37 .Eo. Figure 3b shows
two different pulse widths.

c. the sine wave

E(t) = sin( 27c t (10)E~~t). =to -)

with E4 = 1 Vm-1, and frequency fo = 1/(N.8t) [ woo = 27c/(N.8t) ], where N is the
number of time steps of 8t each, whence N.8t is the period. Figure 3c shows ten
cycles of the sine pulse with a period of 5 ns, hence a frequency of 200 MHz.

Note the different abscissa and ordinate scales used in Figures 3a-3c. These three
waveforms, when fast-Fourier transformed into the frequency domain, have the frequency
spectra shown in Figures 4a-4c.

For the NEMP, note that the frequency spectrum reaches 1% of its peak value at
about 100 MHz, 0.1% at about 220 MHz, and 0.01% at about 330 MHz. From 400 MHz
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on numerical noise enters into the FFT process.

For the Gaussian pulse, note that narrower time-pulses have wider frequency
spectra, and that 1% and 0.1% of peak values in frequency spectra are reached in the
Gigahertz range (in our example where 8t = 4x 10.11 s). For the m =12 case, 1% is
reached at about 1.5 GHz and 0.1% at about 1.8 GHz, and numerical noise dominates
(i.e. the real signal falls below the "noise floor" value of about 1015) after 2.5 GHz. For
the m =6 case these "break points" are about doubled.

The theoretical frequency spectrum of the sine pulse is, of course, the delta
function centred at fo. Figure 4c shows the FFT representation of 6(f- fo), i.e. the sinc
function. (Figure 4c is the only one among 4a-4c that shows a "truncation effect*. In
figures 3a and 3b, the time-domain values of the pulses are taken until the pulses have
"gone through", i.e. until the pulse values are negligible, so the frequency spectra in
Figures 4a and 4b are "complete". This is, of course, not possible in the sine wave 3c.)

FDTD RESULTS FOB AN OPEN BOX

We use, as the example in this study, a perfectly conducting cubic box with an
open top, and an incident x-polarized plane wave propagating in the -z direction. Each
edge of the cubic box is 30 cm, and the x, y, and z coordinates range from 0 to 0.3m.
The cubic box is divided into 13 x 13 x 13 Yee cells, centrally located within an FDTD cell
space of 60 x 60 x 60 cells. Four field points are chosen for comparison between their
time- and frequency-domain E,-field responses. These points are labelled A,B,C,D and
are at a distance of 0.0577m from the x = 0"-wall, 0.1 385m from the "y = 0"-wall, and
0.0923, 0.2077, 0.3000 (at the "moutho of the box), and 0.5077 ("outside" the box)
metres from the bottom (z=0) of the box, respectively. Since each cubic Yee cell has
an edge length of 0.3m/13 = 0.0231m, these field points are 2.5 space steps from the
"back%, 6 space steps from the "siden, and, respectively, 4, 9, 13, and 22 space steps
from the bottom. [The x-coordinates are half a space step off because in the Yee cell,
the Ex-field component is evaluated at (x+ 8x,y,z).] Figure 5 shows the boundary faces
of this open box, on which the tangential E-fields are set to zero.

Figures 6-8 show the time-domain E.-field response, at the selected field points,
to incident NEMP, Gaussian, and sine pulses.

Figures 9-10 show the frequency-domain E4-field response at the selected field
points, obtained from a fast Fourier transformation with de-convolution of the incident
pulse of the corresponding time-domain curves in Figures 6 and 7. For the responses
to the NEMP in Figure 6, since it was too time-consuming to run FDTD for enough time
steps for them to decay down to close-to-zero values, they are extrapolated for later time
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using a simple exponential decay curve. (It is necessary in the time-to-frequency Fourier
transform for the time-domain function values to reach close to zero for the Fourier
integral not to be *truncated".) The magnitude of the frequency response (in this case
at 200 MHz) corresponding to the sine pulse in Figure 8 are simply the stationary time-
domain resporAe peak values (also shown in Figure 8).

The corresponding curves in Figures 9 and 10 compare reasonably in an overall
qualitative way. The excessive "wiggling' of the curves in Figure 9 beyond 300 MHz is
due to the numerical noise in the FFT-frequency spectrum of the NEMP curve for higher
frequencies (as noted above). Thus the results in Figure 9 are only reliable up to about
300 MHz. Because for the Gaussian pulse (with m = 12) numerical noise does not set
in until after 2.5 GHz, we may be tempted to "trustm the results in Figure 10 for the whole
domain (up to 1.75 GHz) shown. There is, however, another limitation in force. The
spatial resolution of the FDTD box is 0.0231 m, and so for reasonable accuracy the
minimum wavelength should be 10 x 0.0231 = 0.231 m, whence the maximum frequency
is 1.3 GHz.

Thus, in the domain 0-3UG MHz, the corresponding curves in Figures 9 and 10 are
identical. Also, the frequency responses obtained from the time-domain incident sine
wave in Figure P match these curves at 200 MHz. We may therefore conclude that any
one of the incident waves may be used to run FDTD, and within the numerically reliable
part of their frequency spectra, the fast-Fourier transformed response in frequency domain
are comparable. From a computational-time standpoint, it is therefore more efficient to
run FDTD with the Gaussian pulse, as less time steps are needed for completion (i.e. for
the response fields to decay to close-to-zero values).

EFIE RESULTS AND COMPARISON IN FREQUENCY DOMAIN

For the EFIE method in the frequency domain, the same open-topped box is used,
subjected to an incident Ex-polarized plane wave travelling in the -z direction at various
frequencies. Several geometric versions of the box are used, representing various
resolution requirements: recall the one-fifth wavelength rule, that the maximum ecge
length on the structure must be at most one-fifth of the incident wave length for the field
results to have reasonable accuracy. Two versions are shown in Figure 11.

There are two different ways to represent the frequency-domain response field
data. One way is for a fixed field point, EFIE is run for a whole domain of different
frequencies (e.g. every 10 MHz step up to 1.6 GHz), and the resulting E-field versus
frequency data set is directly comparable to the Fourier-transformed data from FDTD such
as those shown in Figures 9 and 10. A second, more common, way is for a fixed
frequency, EFIE is run for a set of field points (e.g. for the box at (0.0577,0.1385, z) where z
ranges from -0.1 to 0.6 with 8z = 0.01). To compare the E-field versus location data
set with FDTD, the time-domain FDTD response at many field points are taken and then
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Fourier-transformed to frequency domain, and one value at the particular frequency for
each field point is collected.

As an example of the first type of comparison, consider the field points C =
(0.0577,0.1385,0.3000) and D= (0.0577,0.1385,0.5077). For each field point, EFIE is run
for every 10 MHz, from 10 MHz to 1.6 GHz, and the E,-field values at C and D are
evaluated. The results are the solid curves shown in Figure 12. The dashed curves are
from FDTD, viz the curves in Figures 10c and 10d. The comparison is reasonably good,
and we shall discuss the discrepancies (especially above 1 GHz) in a later section. The
comparison differs from point to point and is better at D (and at other points) than at C.
We shall use the "worst" point C among the four and the Ogood" point D for further
illustration and analysis.

As an example of the second type of comparison, consider at a fixed frequency
200 MHz, the set of field points {(0.0577,0.1385, z): -0.1 < z < 0.6, with 8z = 0.01}.
(Note that this field line passes through the points A-D.) EFIE is run at 200 MHz, and the
E,-field values at these points are evaluated. The result is the curve shown in Figure 13.
FDTD, on the other hand, is run with (arbitrarily) nine field evaluation points. The resulting
time-domain Ex-field data are then transformed to frequency domain, and Exff) at
f =200 MHz at these nine points are the circles in Figure 13. It makes no significant
difference in this case (i.e. at this frequency) which incident wave is used in FDTD, as we
observed in the previous section. Again, the comparison is reasonable, and the minor
differences will be discussed later.

COMPARISON IN TIME DOMAIN

Comparison between FDTD and EFIE can also be made in time domain. When
the Ex-field versus frequency EFIE curves of Figure 12 are inverse-Fourier transformed
to time domain and convolved with the Gaussian pulse, we obtain the solid curves in
Figure 14, which are almost identical to the FDTD results of Figures 7c and 7d (shown
as the dashed curves in Figure 14).

When the EFIE curves are inverse-Fourier transformed to time domain and
convolved with the NEMP, however, we obtain the solid curves in Figure 15. At the field
point D the solid curve compares well with the dashed curve, which is the FDTD result
of Figure 6d. But at the field point C, the solid curve is significantly different from the
dashed curve, which is the FDTD result of Figures 6c.

The key to the explanation of this apparent difficulty in time domain comparison,
at the field point C when the incident plane wave is the NEMP, is in the width of the
frequency spectrum. For the Gaussian pulse with m = 12, over the EFIE domain in Figure
12 from 0 to 1.6 GHz, the frequency spectrum just decreases from its peak value to 0.1%
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(see Figure 4b). Thus the whole data set is significant in the inverse-Fourier transform.
And since the solid curves and the dashed curves in Figure 12 are relatively similar, their
transforms into time domain in Figure 14 are also similar. (The inverse-Fourier transform
of the dashed curves in Figure 12 - i.e. of the curves in Figures 10c and 10d - are of
course just Figures 7c and 7d.) For the NEMP, 0.1% of the peak value is already reached
at about 220 MHz, hence only the low-frequency portion of the curves in Figure 12 are
significant in the inverse-Fourier transforms. (The FDTD curves that should be used here
are actually Figures 9c and 9d, but in the domain from 0 to 220 MHz Figures 9c and 10c,
and Figures 9d and 10d - the dashed curves in Figure 12 - are identical.) Observe that
for the field point D in Figure 12, from 0 to 220 MHz, the solid and dashed curves are
very similar, and so their transforms into time domain in Figure 15 are also very similar.
But for the field point C, in the domain from 0 to about 150 MHz in Figure 12, the two
curves are very different, and so their transforms into time domain in Figure 15 are
different. (The inverse-Fourier transforms of Figures 9c and 9d are Figures 6c and 6d,
respectively.)

So the question becomes: why, as in Figure 12 for the field point C, does the
frequency domain comparison not fare well for low frequencies (< 150 MHz)? Here is
where the different geometric versions of the patch-model box become a factor - but not
in the expected way due to the one-fifth wavelength rule.

All the EFIE results presented so far are done with the coarser box in Figure 11,

i.e. the one where the edge of the cube is divided into four equal parts. In this model,

the maximum-length edges are the diagonals, which are r2 xO.3/4 = 0.106 m. Hence
by the one-fifth wavelength rule this box is good for frequencies up to about 566 MHz.
The other box in Figure 11 has the cubic edge divided into ten equal parts, and by the
same rule is good up to about 1.4 GHz. The one-fifth wavelength rule, however, sets a
limitation on high frequencies, and so does not explain the low frequency difficulties. In
fact, the one-fifth wavelength rule may be more stringent than what is observed in
practice. We could run the coarser box up to 1.6 GHz and the results obtained up to
about 1 GHz are very similar to those from the finer box. The use of the coarser box is
the reason why in Figure 12 the two curves do not match well above 1 GHz.

As it turns out, however, the box with the finer grid does give better low-frequency
values. The reason is that in the calculation of near fields from the currents on the edges,
there must be a fine enough spatial resolution in the geometric structure to reflect the
highly varying field values, especially when close to boundary edges (i.e. those edges
around the opened top). This *edge effect" seemc to be more pronounced at low
frequencies. The numbers on the dashed curves in FiyJ e 16 represent the number of
divisions of the cubic edge into equal parts. Note that then e is no significant improvement
in using a finer division than edge/10. Figure 17 shows the corresponding comparison
in time domain. There is still significant difference between IFFT(EFIE) and FDTD.
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FDTD DISCRETIZATION

One limiting feature of the Yee-cell FDTD formulation is that the various
components of the electric and magnetic fields are assumed to be constant within each
Yee cell, thus these field values are "discretized" in spatial steps. We have been
evaluating the E,-field component at (x+8xl2,y,z) in EFIE, because these are the

coordinates where the Yee-cell Ex-fields are attached. When we try field points with EFIE

in close neighbourhoods around the points (x+ Ux12,y,z), however, we manage to get
good comparison between IFFT(EFIE)*NEMP and FDTD. Here EFIE is run with the
edge/10 finer grid model of the box.

For example, around a neighbourhood of the field point C = (0.0577,0.1385,0.3),
we find that evaluating the EFIE Ex-field at C' = (0.0577,0.1385,0.2850) gives the best
match between EFIE and FDTD in time domain. Moving the point C' slightly in the x
direction yields minor variations in the Ex-field, moving slightly in the y direction yields
no change, while moving in the z direction yields the most significant changes. The best
match is when C' = C - (0.,0.,0.0150). See Figure 18. (We have only tried varying one
spatial direction at a time for simplicity. It is entirely possible that the best match in fact
occurs at a point where all three coordinates differ slightly from C.)

Similarly, for the other three field points, we find the best matches at A' = A +
(0.,0.,0.0090), B' = B - (0.,0.,0.0140), and D' = D. Field point C requires the largest
spatial shift for comparison because around the "mouth" of the box, the field values have
the largest variations with respect to position.

Thus, the corresponding field evaluation points that give the best match in time-
domain between EFIE and FDTD are within a spatial step 8z in the z direction of each
other (i.e. within the same Yee cell). This is accountable as "discretization error*, as the
FDTD fields are discrete approximations of the "smooth" EFIE fields. Figure 19 shows
the origin of this discretization error. The "central differencing scheme" of the FDTD
approach approximates the derivative of a smooth function f(x) at a point a by

-y(a) -Y(a) 2
dxi ax h

where h is the differencing interval. But the value of this mapproximate derivative" is not
necessa•rily the exact value of df/dx at a. The mean value theorem for derivatives in
elementary calculus only guarantees the existence of a value a' somewhere between
a-/12 and a+IJ2 with
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-d(a') = (a (12)
dx ax

This is why the exact match between EFIE and FDTD occurs not necessarily at the same
field point but within a spatial step.

(An alternative hypothesis exists for the non-correspondence between the FDTD
field point and the EFIE field point: in [9] it is stated that the discrepancy may be due to
FDTD 's spatial approximation at the box surface. But this fuzzy boundary" is an artifact
of using an FDTD body with a one-cell-thick wall. Our version of the FDTD model for a
perfectly conducting body, as we mentioned before, has a "sharp" boundary of zero
thickness. The uncertainly in the distance of the field point from the surface of the body
is, therefore, not an issue in our algorithm.)

Theoretically, therefore, if h is made smaller, the difference between a and a'
may become smaller. That is to say, that if FDTD is run with smaller cells (finer
resolution), the spatial difference between matching FDTD and EFIE field points will be
smaller. But using smaller cells also means more cells, and then computer memory and
running time become factors.

CPU-TIME CONSIDERATIONS AND MODELLING GUIDELINES

We have shown that in computer simulations of the interaction of electromagnetic
waves with geometric structures, both time- and frequency-domain codes may be used.
The two independent methods are comparable - as long as proper precautions are taken
- and can be used as verification of the accuracy of each other.

From an efficiency, i.e. CPU-time economy, point of view, the FDTD method with
an incident Gaussian pulse is the approach of choice. For the open box example,
running EFIE takes about 3 hours of CPU-time on a VAX 6420 for each frequency,
running FDTD with the Gaussian pulse (2000 time steps) takes about 6 hours, and
running FDTD with the NEMP (10000 time steps) takes about 30 hours (and the latter still
needs further extrapolation). Other geometric structures also have a similar CPU-time
ratio, that the CPU-time taken for EFIE(one frequency) :: FDTD(Gaussian):: FDTD(NEMP)
is 1::2::10.

The reason that FDTD(Gaussian) is the most efficient is that the time-domain
response decays back to zero rapidly, and that after a complete run, one can Fourier-
transform the results (with de-convolution of the Gaussian pulse) and obtain the field
response for all frequencies (within the wide frequency spectrum of the Gaussian pulse).
In other words, in the time it takes EFIE to run two frequencies, the process
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FFT/Gaussian [ FDTD(Gaussian) ] = EFIE(all frequencies)

gives the whole frequency spectrum of responses. Because frequency-domain response
comparison, with FFT(FDTD) versus EFIE, has been shown to be reasonably accurate,
this process is a reliable and time-saving method in obtaining frequency-domain data.

In time domain, if one simply wants the early-time response to the NEMP, one may
run FDTD(NEMP) directly. If, however, one is in fact interested in the late-time EMP
response, one can run FDTD(Gaussian), then Fourier-transform to frequency domain with
de-convolution of the driving Gaussian pulse, and then inverse-Fourier-transform the
frequency-domain response thus obtained and convolve with the NEMP; i.e. through the
process

IFFT [ FFT/Gaussian [ FDTD(Gaussian) ] I * NEMP = FDTD(NEMP).

This way, FDTD only has to be run for the small number of time steps that an incident
Gaussian pulse requires, instead of the long duration of the NEMP pulse. Several EFIE
runs at selected frequencies and a direct FDTD(NEMP) run (for a smaller number of time
steps) can always be used as checks to insure accuracy of this approach.

Thus, in summary, the merits of the FDTD method with an incident Gaussian pulse,
followed by a time-to-frequency Fourier transform, are:

a. large frequency content of the incident pulse,
b. pulse decays down to zero rapidly, minimizing running time, and
c. efficiency: one time run to obtain all frequencies.

(Note, however, there is nothing "magical" about the Gaussian pulse itself: any time-
domain pulse of narrow pulse width would share the same merits. The Gaussian pulse
is chosen because of its simple analytic form and because it is a "standardn.) The main
disadvantage is due to computer resources, that only the chosen field quantities at
several specified points are written to the output (although all six field components at all
the Yee cells are evaluated at each time step, due to the constraint of the size of the
output file only those chosen ones are written out). The code must be run again for
computation of other field components and at other points. (As a contrast, in EFIE the
currents on all the edges are stored in an output file. So the field values at any other
points at the same frequency can be calculated from this "currents file" and EFIE does
not have to be rerun.)

Time-domain response comparison has some inherent inaccuracies, mainly due
to the fact that difference equations are by definition approximations to differential
equations. In FDTD versus IFFT(EFIE), care has to be taken in finding the correct field
locations for direct comparisons. Frequency-to-time inverse Fourier transformation also
has some inherent problems. For a complete time-domain response it is less efficient
from CPU-time considerations as described before. In addition, even for early-time
response determination one still has to calculate the frequency response at a large
number of frequencies to obtain an accurate IFFT into time-domain.
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Finally, it must be remembered that discretization errors can be significant. In the
FDTD approach one must keep in mind that the minimum reliable wavelength is ten times
the size of the Yee cell (hence setting the limit for the maximum reliable frequency). Also,
using smaller cells (hence more cells), within the limit of the host computer, to model the
geometric object may improve the accuracy of the comparison. The availability of the
field quantities only at discrete points due to the lattice structure can create some
problems. In the frequency-domain code EFIE, discretization affects both the high and
the low frequencies: on the one hand there is the one-fifth wavelength rule we discussed,
setting the limit for the maximum frequency, and on the other hand at low frequencies
there must be enough spatial resolution to reflect highly varying fields in neighbourhoods
of "boundary edges". It must be remembered that the discretization guidelines of "10
cells/Atm and "edges < 1/5' are "traditional" ones based on experience from many
studies in computational electromagnetics. They are sometimes more stringent than
necessary and useful results may be obtained even above the high-frequency threshold.
This is why in some of our figures (notably Figure 9) we have presented the high-
frequency results well above the threshold. The point of caution is that if the guidelines
are violated, one must seek independent verification of the results obtained.

CONCLUSIONS

In this paper, the penetration of electromagnetic waves inside an open-topped
cubic box has been studied. The FDTD code has been used to calculate the time-domain
response for an EMP, a Gaussian pulse, and a sine wave. Comparison, in both time and
frequency domains, has been made with the results obtained by using the frequency-
domain method EFIE. Effects of various factors such as wave shape, structure
discretization, and fast Fourier transformation on CPU-time and accuracy of the results
were discussed. Guidelines for using the time-domain and the frequency-domain codes
were suggested. It was found to be more efficient in most cases to use the time-domain
method.
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Figure 1. Position of the field components in a unit cell of the Yee lattice.

Figure 2. Example of a triangular surface-patch model input fie for EFIE.
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Validation of the Numerical Electromagnetics Code (NEC)
for Antenna Wire Elements in Proximity to Earth

M. M. Weiner
The MITRE Corporation
Bedford, MA 01730-1420

ABSTRACT

This paper summarizes recent MITRE efforts to validate the NEC-3 and NEC-GS
versions of the Numerical Electromagnetics Code (NEC) developed by Lawrence Livermore
National Laboratory for predicting the performance of antenna wire elements in close
proximity to flat earth. In an early version (NEC-i), the effect of the air-ground interface
was included by applying a plane-wave Fresnel reflection coefficient approximation to the
field of a point source. The NEC-2 version, while still retaining the Fresnel reflection
coefficient model as an option, provides a more accurate ground model by numerically
evaluating Sommerfeld integrals. The version NEC-3 extends the NEC-2 version to cases for
bare wire segments below the air-earth interface. Version NEC-GS utilizes rotational
symmetry to provide a more efficient version of NEC-3 for the case of a monopole element
with a uniform radial wire ground-screen (GS).

Results of the various versions are compared with each other and with other models. The
input-output format of the NEC-GS version is discussed. It is concluded that the NEC-3
Sommerfeld integral option in the NEC-GS version is the best available model for monopole
elements with electrically small radial-wire ground planes.

SECTION 1

INTRODUCTION

The Numerical Electromagnetics Code (NEC) is a method-of-moments computer
program developed by Lawrence Livermore National Laboratory (LLNL) for predicting the
performance of wire-element antennas above or buried in flat earth [ 1, 2]. In an early version
(NEC-1), the effect of the air-ground interface was included by applying a plane-wave
Fresnel reflection coefficient approximation to the field of a point source [3, 4]. The NEC-2
version, while still retaining the Fresnel reflection coefficient model as an option, provides a
more accurate ground model by numerically evaluating Sommerfeld integrals [1, 2]. Version
NEC-3 extends the NEC-2 version to cases where bare wire segments are below the air-earth
interface [5]. Version NEC-GS is a more efficient version of NEC-3 for wire antennas that
have rotational symmetry in the azimuthal direction, such as a monopole element with a
uniform radial-wire groundscreen [6, 7]. Version NEC-31 extends NEC-3 to include the case
of insulated wires [8, 9]. The NEC-2 program is available to the public, whereas the NEC-3,
NEC-GS, and NEC-31 programs are presently available only to U. S. Department of Defense
contractors after completion and approval of a NEC order form obtainable from LLNL.

Code documentation has been produced by LLNL for the NEC-2 version and, in a more
limited form, for the NEC-3, NEC-GS, and NEC-31 versions. The NEC-2 documentation
consists of the theory and code in volume 1 of reference I and a user's guide in volume 2 of
reference 1. The NEC-3, NEC-GS, and NEC-31 documentations are in the form of user's
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guide supplements given in references 5, 7, and 8, respectively. The NEC-2 user's guide and
NEC-3 and NEC-GS user's guide supplements give examples of input and output files for
most of the options available. Sample input and output files for the NEC-31 program are
given in reference 9.

Code validation efforts by LLNI!, for ant ennas near ground, are summarized in reference
10. In addition to several internal consistency checks, reference 10 compares NEC results
with those from theoretical models, numerical codes, and to a lesser extent with actual
measurements.

The present paper reports recent MITRE efforts to validate the NEC-3 and NEC-GS
programs. Results of the various versions are compared with each other and with other
models. The input-output format of the NEC-GS version is discussed. Validation results by
MITRE are described in sections 2, 3, and 4 for NEC-3 in the Fresnel reflection coefficient
option, NEC-3 in the Sommerfeld integral option, and NEC-GS, respectively.

SECTION 2

VERSION NEC-3, FRESNEL REFLECTION COEFFICIENT OPTION

2.1 SELECTION OF SQUARE ROOT BRANCH

The NEC-2 and NEC-3 codes, in the Fresnel reflection coefficient option, select the
principal value branch of each square root occurring in the equations for the Fresnel
reflection coefficients. The question arises as to whether the principal value is the correct
branch of the square root, particularly in cases where the effective complex permittivity of
the ground plane at the air-ground plane interface has a negative real part. Such cases can
occur for wire grids, in free space or in proximity to earth, because the ground plane
permeability is conventionally set equal to that of free space.

The Fresnel reflection coefficients Rv and RH, for vertical and horizontal polarizations,
respectively, are given by equations (179) and 180) in Volume 1 of reference I as

O- ZR(1- Z2 sin2 0)1/2
Rv = cose + ZR( -Zsin2 0)1fl (2-1)

R_ (1- Zsin 220)12 - ZRcos0 (2-2)
RH = (1 - Z4 sin2 0)1/2 + ZR COS 0

Our investigation concludes that the principal value is the correct branch of the quantities

ZR - [(s /eo) - j (a /weo)I -t/2 and (1-R sin2 0)'/IZR in equations (2-1) and (2-2)

regardless of whether the effective dielectric constant el/1Eo is negative, assuming a passive

ground medium [(al/eo)> - 0]. This conclusion follows from the requirements that the

45



complex wave number k = w(eoto) 1' 2IZR has an argument in the fourth quadrant of the
complex plane for a plane wave propagating with a time dependence of the form

E= O exp[ _ _ k ~r7)

and that the magnitude of the Fresnel reflection coefficient does not exceed unity for a plane
wave incident from a lossless medium onto a passive medium [131.

In equations (2-1) and (2-2) the principal values of (I - Z4 sin2 0)12 each satisfy the

condition IRvI _ I for the case of a plane wave incident from a lossless medium onto a passive

medium, regardless of whether Re (1/Z4) = el /eo is positive or negative. Equations (2-1)
and (2-2) are in the same form as that given by Stratton [14].

If one divides the numerator and denominator of equation (2-1) by Z4, one obtains the
form given by Reed and Russell [ 15], namely,

(1/ZR) 2 COS 0 _ [(I/ZR)2 sin2 e] 1/2
Rv [1'R2e 23

(1/ZR)2 CoS 9 + [] 112 (2-3)

In equation (2-3), the principal value of [(I/ZR)2 -sin2 9] satisfies the condition IRvI _ 1 for

the case of a plane wave incident from a lossless medium onto a passive medium Qn•y if

Re (I IZ4) = el/ o -> 0. For El I/ 0 < 0, the condition IRvI-< l is satisfied by the

nonprincipal value of[(1/ZR)2 _ sin2 0] )12.

The form of the reflection coefficient given by equation (2-1), unlike that given by
equation (2-3), gives correct results for all cases of a wave incident from a lossless medium
onto a passive medium if the square roots are restricted to their principal values. The validity
of the principal values for the square roots in equations (2-1) and (2-2), subject to this
condition, has been confirmed by Burke [161. In reference 16, please note that a wire grid in

free space has a relative permittivity (= principal value[(Y + )/Yo]2) whose imaginary
part has a conductivity greater than zero and whose real part (the dielectric constant) is

negative. The wire grid admittance is given by Yg = -jYo /[(s/ A)ln(s / ird)] and the free

space admittance is given by Yo, = (E/, lo,)1/2 where s is the grid spacing (s/A << 1) and d is
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the wire diameter (dis << 1). However, even for the case of a negative dielectric constant
and positive conductivity, the principal values of the square roots yield valid results. For that

case, IRVI equals unity and arg Rv, differs by 180 degrees from that for a positive dielectric
constant and positive conductivity. This result is analogous to the case of a perfect ground

plane for which IRvI equals unity and arg Rv differs by 180 degrees from that for an
imperfect ground plane at an angle of incidence equal to 90 degrees.

2.2 COMPARISON WITH OTHER MODELS

Fresnel reflection coefficient models for antennas in proximity to earth are generally
grossly inaccurate in determining input impedance, radiation efficiency, and power gains
unless the ground plane and monopole element current distributions are predetermined by
other methods such as the method of moments. However, Fresnel reflection coefficient
models are accurate when determining the absolute directivity or directivity pattern for the
case of an antenna element in proximity to earth, or a ground plane of infinite extent (see
discussion at end of this section). These remarks are applicable not only to the Fresnel
reflection option of the NEC-2 and NEC-3 programs, but also to any model which attempts
to approximate the ground plane current, originating from a spherical wave source, by that
determined from a plane-wave, Fresnel reflection coefficient model.

The antenna element current distribution, in the reflection coefficient option of NEC-3, is
determined by considering the mutual impedance between the source antenna element and its
ground plane image. The ground plane image is determined by considering the Fresnel
reflection coefficient only for the ground plane (or earth) directly below the antenna element.
Consequently, ground screens of small density or extent will yield the same reflection
coefficient as a ground screen of large density or extent. Furthermore, the Fresnel reflection
coefficient model neglects groundscreen edge diffraction and underestimates earth losses,
both of which can be significant for small ground planes. For these reasons, the input
impedance of an antenna element in proximity to earth is poorly estimated by the reflection
coefficient option unless the element has a ground plane of sufficiently large density and
extent.

Fresnel reflection coefficient models are grossly inaccurate in computing the radiation
efficiency of antennas in close proximity to earth because such models only consider ground
losses caused by plane-wave reflection and refraction and ignore spherical-wave generation
of a leaky evanescent surface wave that is generated in the air medium in proximity to the
air-earth interface. The surface wave, with an evanescent field in the air-medium only, leaks
energy into the earth medium but not into the air medium [17, 181. A comparison of the
radiation efficiency q (= ratio of far-field radiated power in air to the input power delivered
to the antenna) calculated by the Sommerfeld option of NEC-3 (which considers surface
wave ground losses) with that calculated by a Fresnel reflection coefficient model is shown in
Table 1 at a frequency of 15 MHz for a vertically polarized thin dipole whose base has zero
current and is zero height above CCIR-527-1 classifications of Earth [ 11 ]. For medium dry
earth, the Sommerfeld option yields numeric radiation efficiencies of 0.104 and 0.304 for
element lengths of 0.02 and 0.25 wavelengths, respectively, whereas the Fresnel reflection
coefficient model predicts radiation efficiencies of 0.013 and 0.283, respectively. In this
example, the Fresnel reflection coefficient model underestimates the radiation efficiency by
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Table 1. Radiation Efficiency of a Vertically Polarized Thin Dipole of Length h Whose
Base has Zero Current and is Zero Height above Earth, f = 15 MHz

CCIR-527-1 Earth Radiation Efficiency Ti (numeric)
Classification
(ep a Sin) h/X=O.0l hA/=0.02 hA=0.05 hA=0.10 h/X=0.15 h/X =0.20 h/X=0.25 hA=0.50

(1) Perfect Ground

(1,-) Sammerfeld 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fresnel 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(2) Sea Water(70, 5) Sommerfeld* 2.33 (10-) 0.019 0.220 0.599 0.724 0.758 0.766 0.708
Fresnel 8.67 (10-2) 0.451 0.703 0.763 0.778 0.780 0.775 0.707

(3) Fresh Water
(80, 3.0 x 10-2)

Somnmerfeld* 7.34 (10-"4) 5.94 (10-1) 0.080 0.308 0.432 0.474 0.483 0.410
Fresnel 2.82 (10-) 2.05 (10-2) 0.145 0.302 0.379 0.417 0.434 0.396

(4) Wet Ground
(30, 1.0 x 10-2)

Sommerfeld* 4.42(10") 3.57 (10-3) 0.050 0.217 0.328 0.370 0.381 0.321
Freshel 9.46 (10"4) 7.38 (10-s) 0.073 0.194 0.263 0.301 0.321 0.305

(5) Medium Dry Ground(15, 1.0 X 16-3)

Sommerfeld* 1.30 (10-s) 0.104 0.116 0.296 0.347 0.357 0.355 0.304
Fresnel 1.73 (10-3) 1.30 (10-2) 9.05(10-2) 0.175 0.222 0.252 0.272 0.283

(6) Very Dry Ground
(3, 1.Ox 10-4)

Sommerfeld* 1.05 (10-4) 8.25 (10-3) 8.89 (10-2) 0.214 0.250 0.260 0.265 0.283
Fresnel 6.30(10") 4.94(10-3) 5.08 (10-2) 0.126 0.163 0.186 0.204 0.264

(7) Pure Water, 20 °C
(80, 1.7 x 10-3)

Sommerfeld* 3.63 (10-2) 0.202 0.500 0.544 0.542 0.534 0.523 0.437
Frcsnel 6.65(10-2) 0.126 0.215 0.324 0.392 0.429 0.448 0.420

(8) Ice, -1 °C
(3, 9.0 x I0-2)

Sommerfeld* 1.16 (10-3) 9.14 (10-3) 9.53 (10-2) 0.218 0.252 0.262 0.266 0.283
Fresnel 6.99 (10-s) 5.47 (10-s) 5.43 (10-2) 0.129 0.164 0.187 0.205 0.264

(9) Ice, -10 lC
(3, 2.7 x 10-I)

Sommcrfeld* 3.84 (10-T) 0.0283 0.175 0.254 0.267 0.270 0.271 0.286
Fresnl 2.30 (10-4) 0.0167 9.60 (10-2) 0.150 0.175 0.194 0.209 0.267

(10) Average Land
(10, 5.0 x 10-()

Sommerfeld* 1.16(10-4) 1.34 (10-3) 1.95 (10-2) 0.106 0.193 0.241 0.260 0.238,.
Fremel 1.97(10-") 1.59 (l0-3) 2.10(10-2) 8.96(10-2) 0.148 0.185 0.207 0.219

(1 I) Free Space
(1,0)

Sommerfeld 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fresnel 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

* More accurate result

Sommerfeld is NEC-3 program in Sommerfeld option N = 9 segments, b/= 10-5, voltage excitation at 5th segment

Fresnel s NEC-3 program in Fresnel reflection coefficient option, N = 9 segments, bA = 10-5, voltage excitation

at 5th segment
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88 percent and 7 percent for element lengths of 0.02 and 0.25 wavelengths, respectively. For
seawater, the Sommerfeld option yields numeric radiation efficiencies of 0.019 and 0.708 for
element lengths of 0.02 and 0.25 wavelengths, respectively, whereas the Fresnel reflection
coefficient model predicts radiation efficiencies of 0.451 and 0.707, respectively. In that
example, the Fresnel reflection coefficient model overestimates the radiation efficiency by
2273 percent and 0.14 percent, respectively. The Fresnel reflection coefficient model is
therefore inappropriate for computing radiation efficiency for antennas in close proximity to
earth. The error in using the Sommerfeld integral option is no more than 23 per cent for the
worst case, as discussed in section 3.2.

Despite the inadequacy of Fresnel reflection coefficient models for estimating the input
impedance and radiation efficiency of antenna elements in close proximity to earth, such
models ar= accurate in estimating the antenna's absolute directivity and directivity pattern for
the case of an antenna element in proximity to earth (or to a ground plane of infinite extent)
and for an antenna element whose ground plane current distribution is pre-determined by
other methods. The directivity, computed by the NEC-3 Sommerfeld option, Richmond's
method of moments [ 19,21], and a Fresnel reflection coefficient model, are compared in
Table 2 for the case of a vertically polarized quarter-wave monopole element on medium dry
earth. Each model gives the same directivity to within 0.04 dB at a given angle of incidence.

However, even for a case where directivity is correctly given by a Fresnel reflection
coefficient model, the power gain (= directivity x radiation efficiency) may be incorrect
because the radiation efficiency may be grossly inaccurate.

SECTION 3

VERSION NEC-3, SOMMERFELD INTEGRAL OPTION

3.1 LLNL VALIDATION EFFORTS

LLNL has compared numerical results for the input impedance and electric field of a
sloping base long-wire antenna over conducting Earth, obtained from NEC-3 in the
Sommerfield integral option, with measurements by Breakall and Christman [ 10]. Predicted
versus measured values differed approximately by 25 to 100 percelot for input resistance,
± 30 ohms about 0 ohms for input reactance, and I to 9 dB pV/m for the electric field.

3.2 MODIFIED RADIATION EFFICIENCY OF A VERTICALLY POLARIZED,
HERTZIAN DIPOLE IN PROXIMITY TO DIELECTRIC EARTH

NEC-3 results by Burke 120], for the modified radiation efficiency 77d (defined in
Figure 1) of an electrically short, vertical dipole above dielectric Earth, are compared in
Figures 1 and 2 with King's analytical results for a Hertzian vertical dipole [ 18] obtained by
integrating the vertical component of the Poynting vector along a far-field line parallel to the
air-Earth interface. The two models give similar results for sufficiently large values of the
Earth dielectric constant, but differ by 15 percent for the Earth dielectric constant Er = 9

(orkil/k2 = 3I) when the dipole is at zero height above the Earth. The results of King are

approximate because his analytical model is subject to the condition rr >> 1 (or equivalently
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Figure 1. Modified Radiation Efficiency of a Vertical Hertzian Dipole at
Zero Height Above Dielectric Earth
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Hertzian dipole at height I zo I in air (kQ)
over a dielectric half-space (k, = k2 fr-r)
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Figure 2. Modified Radiation Efficiency of a Vertical Hertzian Dipole at
Various Heights Above Dielectric Earth

52



k1/k 2 > 3) except for the condition Er = 1 which is treated separately. The NEC-3 results are

for a vertical dipole of half-length = 10-4 wavelengths and radius = 10-6 wavelengths at a

height izol above earth measured from the center-feed of the dipole. In this paper the

convention is followed that lower-case z designates the Earth's vertical position with respect
to the antenna ground plane (or base of the antenna element, in the absence of a ground
plane) and upper-case Z designates impedance.

The case of a lossless antenna element over dielectric Earth provides an excellent
opportunity for testing the accuracy of the antenna input current, 1, computed by the

Sommerfeld integral option of the NEC-3 code. The antenna power gain G averaged over

the radiation sphere (solid angle of 47r steradians) is defined as

SPrd/Pin =(Pair + Pearth)/Pin (3-1)

where

Prad = total far-field radiated power = Pair + Pearth

Pair = far-field radiated power in the air

Pearth = far-field radiated power in dielectric Earth

Pin = input power delivered to the antenna = (1/2) Re (VI*)

V = input voltage complex amplitude (set equal to 1 volt) in the NEC program for
a steady-state sinusoidal source.

I* = conjugate input current complex amplitude (amperes) that is solved for in the
NEC-3 program. The asterisk denotes "conjugate."

The auantities Pair and Pearth, for an antenna element with azimuthal symmetry, is given by

x/'2

Pair = [r21(2Zo)] 2rf J(Ek E*)sin 6 dO (3-2)
0

Pearth r [2/1(2Z0 )] 2;r *)sin 0 dO (3-3)

where

r = distance from the antenna element to the far-field point P(r, 0, 0)(m)

E = electric field intensity at the far-field point P(r, 0, 0p)(V/,n)

z.= (.u, / EO)11 = free space w.'ve impedance (ohms)

For a lossless antenna over dielectric Earth, the average power gain G equals 1, if there are
no errors in the NEC-3 program and the computer has infinite precision. Assuming that the
computer has sufficient precision and that the integration steps in equations (3-2) and (3-3)
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are sufficiently small, then any deviation of G from unity is a measure of the accuracy of the

current I computed by the NEC-3 program. The reason is that PI,, is proportional to I

whereas, Pair and Pearth are proportional to 1112 (because E is propo,-tional to 1).

The quantity G, as computed by the NEC-3 program, is a weak function of the number
N of segments (or current variables) chosen to represent the antenna element. Whenever one
uses the method-of-moments, too coarse a segmentation results in poor accuracy due to
undersampling the current distribution. Too fine a segmentation can again result in poor
accuracy because of round-off errors caused by the finite precision of the computer. The
element segmentation, for vertical dipole and monopole elements above Earth, is shown for a
voltage excitation source in Figure 3. For a thin, electrically short dipole at a height

Izo VA = 0.4 above dielectric Earth U differs from unity by 1.4 percent for
N=5 and 0.1 percent for N = 101 (see Table 3). For the same dipole at a height

Izo A = 0.0001 above the same dielectric Earth, U differs from unity by 22.3 percent for
N = 11 and 22.6 percent for N = 101. Even though the element segment length for N = 101
in Table 3 is one-half the recommended minimum segment length relative to the segment
radius (see section 4.2), the results are not significantly different than for N = 5 1.

The difference of G from unity increases with increasing Earth dielectric constant and

decreasing2 element height above earth. For a dipole at a height IzoI/q' = 0.0001, G" differs

from unity by 7.6 percent for and 40.2 percent for = 81 (see Table 4). For a
dipole above dielectric Earth with = 9, G differs from unity by 22.6 percent for

Izo/VA = 0.0001 and 0.7 percent for Izo[/VA = 2.0 (see Table 5).

The differences of G from unity in Tables 3 through 6 indicate that the NEC-3 program
has inaccuracies as much as 25 percent or more in computing input current, input impedance,
and input power for an electrically short antenna element in close proximity to Earth. These
in-accuracies do not apply to the computation of modified efficiency 77d but would also affect
the computation of radiation efficiency if the antenna element were in proximity to lossy Earth
since radiation efficiency is a function of the absolute accuracy of the input current.

For dielectric Earth the modified radiation efficiency is not dependent upon the absolute
accuracy of the input current since both (Pir and Pearh) are proportional to the same computed
value of input current. Therefore, the modified radiation efficiency computed by NEC-3 for
dielectric Earth is accurate to within the precision of the computer and the size of the
ihitegration steps AO of the far-field power density. In NEC-3, the modified radiation

efficiency r7d is computed for dielectric Earth as the quotient of Pair divided by (Par + Pearth),

namely:

17d = modified radiation efficiency = 17/G = Pair /(Pair + PIanh) (3-4)
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Table 3. Effect of Number of Dipole Segments on Average Power Gain and Radiation
Efficiency Computed by Program NEC-3 for an Electrically-Small, Vertical Dipole at

Heights Izo/ X = 0.4 and 0.0001 above Dielectric Earth (Er = 9, 0 = 0)

No. of Modified
Seg- *Average Power Gain, Radiation Efficiency, Radiation Efficiency, lid

ments, I = Pair/(Pair + Pearth)
N (Pair + Pearth)/Pin P.IrIPin =11/ 1]

Izol/I = 0.4 Izol/i = 0.0001 IzoVI = 0.4 lzol/I = 0.0001 Izo1/I = 0.4 IzoV1 = 0.0001

5 0.9858 - 0.3356 - 0.3404 -

11 0.9963 1.223 0.3392 0.1260 0.3404 0.1030

21 0.9983 - 0.3399 - 0.3404 -

31 0.9989 1.226 0.3400 0.1263 0.3404 0.1030

41 0.9989 - 0.3400 - 0.3404 -

51 0.9989 - 0.3401 - 0.3404 -

81 0.9990 - 0.3401 - 0.3404 -

101 0.9990 1.226 0.3401 0.1263 0.3404 0.1030

Dipole length h/A = 2 x 10-4
Dipole radius bA = I x 10-6
Integration step A0 = 1.0 deg, 0 5 0 ! 90 deg; 0.1 deg. 90<5 08< 180 deg
Pair, Peirth = far-field radiated powers in air and dielectric earth, respectively
Pin = (1/2) Re (VI1) = (1/2) V Re 1*
b = 1, for a loss-less element over dielectric earth, if there were no errors in NEC-3 program and the

computer had infinite precision.

Table 4. Effect of Earth Dielectric Constant on Average Power Gain and
Radiation Efficiency Computed by Program NEC-3 for an Electrically-Small, Vertical

Dipole at Height IzoI/X = 0.0001 above Dielectric Earth (a = 0)

Modified Radiation
Dielectric *Average Power Efficiency, ld
Constant, Gain, ( Radiation Efficiency, = PairI(Palr + Pearth)

Cr (Pair + Pearth)/Pin Ii = Pair/Pin =1I/ C

1.0 0.9997 0.4998 0.5000
2.25 1.0763 0.1493 0.1387
4.0 1.1301 0.1272 0.1126
9.0 1.2257 0.1263 0.1030

16.0 1.2826 0.1300 0.1014
25.0 1.3096 0.1311 0.1001
36.0 1.3442 0.1308 0.0973
49.0 1.3565 0.1294 0.0954
64.0 1.3848 0.1272 0.0919
81.0 1.4017 0.1244 0.0888

100.0 1.4026 0.1214 0.0866
400.0 1.4840 0.0919 0.0620
900.0 1.5258 0.0724 0.0475

1600.0 1.5295 0.0593 0.0388
2500.0 1.5321 0.0501 0.0327
3600.0 1.5308 0.0433 0.0283
4900.0 1.5278 0.0382 0.0250
6400.0 1.5223 0.0342 0.0225
8100.0 1.5148 0.0309 0.0204

Dipole length hA 2 x 10-4, dipole radius bA = I x 10-6. no. of dipole segments N = 31
Integration step A0 = 1.0 deg, 0< 05 • 90 deg; 0.1 deg, 90 < 0 < 180 deg.
G -= 1, for a loss-less element over dielectric earth, if there were no errors in NEC-3 program and the
computer had infinite precision
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Table 5. Effect of Earth Dipole Height on Average Power Gain and
Radiation Efficiency Computed by Program NEC-3 for an

Electrically-Small, Vertical Dipole above Dielectric Earth (Er = 9, a 0)

Modified Radiation
*Average Power Radiation Efficiency, TId

Height Above Gain, G Efficiency Pair/(Pair + Pearth)
Earth, IzoI/, (Pair + Pearth)/Pin nI = Pair/Pin =I/jG

0.0001 1.2257 0.1263 0.1030
0.0003 1.2257 0.1266 0.1033
0.001 1.2165 0.1269 0.1043
0.003 1.1895 0.1276 0.1073
0.01 1.1053 0.1301 0.1177
0.03 1.0096 0.1498 0.1483
0.1 0.9988 0.2410 0.2413
0.2 1.0007 0.2971 0.2969
0.3 0.9987 0.3078 0.3082
0.4 0.9987 0.3400 0.3404
0.6 0.9970 0.4609 0.4623
0.8 0.9971 0.5082 0.5097
1.0 0.9958 0.5207 0.5229
1.4 0.9945 0.5463 0.5493
2.0 0.9928 0.5593 0.5633

Number of dipole segments N = 31
Dipole length hA = 2 x 10-4
Dipole radius bA= x 10-6
Integration step A0 = 1.0 deg, 0•_ 0! <90 deg; 0.1 deg, 90 < 0 < 180 deg

* G = 1, for a loss-less element over dielectric earth, if there were no errors in NEC-3 program and the
computer had infinite precision

Table 6. Effect of Number of Dipole Segments on Average Power Gain and
Radiation Efficiency Computed by Program NEC-3 for an Electrically-Small, Vertical

Monopole Whose Base Rests on Dielectric Earth (er = 9, a = 0)

Modified Radiation*Average Power Radiation Efficiency,
No. of Gain, G Efficiency, lid = Pair/(Pair + Pearth)

Segments, N (Pair + Pearth)/Pin T1 I Pair/Pin = TI/G
5 1.1703 0.1205 0.1030
11 1.1871 0.1223 0.1030
21 1.1877 0.1223 0.1030
31 1.1837 0.1219 0.1030

Monopole length h/A = 2 x 10-4
Monopole radius b/A = I x 10-6
Integration step A0 = 1.0 deg, 0 •< 0 • 90 deg; 0,1 deg, 90 < 0 _< 180 deg.

* G = 1, for a loss-less element over dielectric earth if there were no error in NEC-3 program and the
computer had infinite precision.
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where

17 = radiation efficiency = Pair/Pin

U= (Pair + Pearth)/Pin [see equation (3-1)1

The modified radiation efficiency i1d computed by NEC-3 is shown in Tables 3 through 5 for
a dipole above dielectric earth. In Table 3, the modified radiation efficiency is independent
of the number of element segments as is also the case for an electrically-small vertical
monopole element whose base rests on earth (see Table 6). The modified radiation
efficiencies of an electrically-small vertical dipole and monopole, of the same length and
radius and whose bases rest on earth, should be identical. This result is achieved by the

NEC-3 program (compare Table 3 for IzoV) = 0.0001 with Table 6). If the monopole
element in Table 6 is in-creased to a quarter-wave length with 25 segments, the average
power gain G = 0.9990 [22].

The Figure 3(b) geometry for a monopole element driven by a voltage excitation source
between its base and Earth should be used with caution in the NEC-3 program when the
Earth is lossy. Although convergent results of modified radiation efficiency as a function of
the number of element segments were obtained for dielectric Earth, nonconvergent results
were obtained for lossy Earth. However, in the computation of directivity, such a model
gives valid results for lossy Earth (see Table 2)

3.3 PROPAGATION CONSTANT OF CURRENT ON BARE, HORIZONTAL
WIRE (BEVERAGE ANTENNA) ABOVE LOSSY EARTH

Recent measurements of the propagation constant of the current on a Beverage antenna
comprising a bare, horizontal wire 12 inches above medium dry earth and terminated in a
load impedance have been reported at a frequency of 18 MHz [23]. The measurements are in
excellent agreement with an analytical model of King [24] and in poorer agreement with
numerical results from the NEC-3 program. Burke has recently reported that NEC-2 (and
NEC-3) predictions of the propagation constant are in good agreement with a theoretical
model by Olsen, Kuester, and Chang [30].

3.4 INPUT IMPEDANCE, DIRECTIVITY PATTERN, AND ABSOLUTE GAIN OF
A MONOPOLE ELEMENT WITH A BURIED RADIAL-WIRE GROUND
PLANE

Measurements by Harnish, Lee, and Hagn of the input impedance of a monopole element
with a buried radial-wire ground plane are in reasonable agreement with NEC-3 predictions
[311.
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SECTION 4

VERSION NEC-GS

4.1 APPLICABILITY OF ANTENNA GEOMETRY

Version NEC-GS is a more efficient version of NEC-3 for wire antennas that have
rotational symmetry in the azimuthal direction. Examples of antennas with such a geometry
are a vertical, electrically thick, dipole element; a vertical, electrically thick, monopole
element; and a monopole element whose ground plane consists of N uniformly-spaced radial
wires, all of which may be in proximity to earth.

NEC-GS is a more efficient version for such a geometry because the input parameter
specification is simplified and the matrix size (total number of wire segments or current
variables) is reduced. For example, instead of specifying the coordinates for each segment of
N radial wires, it is only necessary to specify the segment coordinate for a single wire.
Furthermore, the matrix size for N radial wires with k segments/wire is reduced from kN to k
when the number of rotations M equals N. The reduced matrix size enables NEC-GS to
model antennas with larger wires and a greater number of wires than can be modeled by
NEC-3.

4.2 INPUT PARAMETER SPECIFICATION

Input parameter guidelines are given in reference 7. The following guidelines [26] may
also be of interest to the user.

Wire intersections are assumed to be connected if two wires are within each other by an
amount of 1/1000 of a segment length.

Horizontal wires on the air side of the earth interface should not approach the earth's
surface to within the greater of 10-6 X or 2 to 3 times the wire radius.

A monopole segment that is connected to a horizontal wire should be at least as short as
the height of the horizontal wire above the earth's surface.

The physical junction of several radial wires with a vertical element is modeled as a
singular point (a node) without regard as to whether the radial wires are conically tapered so
that they are physically able to fit around the vertical element.

The wire currents at a mode are constrained to satisfy Kirchhoff's current law without
regard for current leakage into the earth.

The format for the field of the input parameters, as illustrated on page 5 of reference 7,
should be meticulously followed. For example, in the GR card that specifies the integer
number of ground radials, the omission of the concluding comma increases the number of
radials by a factor of ten.

In the NEC-3 and NEC-GS programs, the segment length should be at least four times
longer than the segment radius. If not, the extended kernel option (IK card) should be used
for segment lengths as small as one segment radius.
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The difference in radii of two adjoining wire segments (or two wires at a junction) should
be minimized. A method for minimizing the difference in radii is the tapering of segment
radii along one of the adjoining wires.

A rotational model may be used to represent a vertical element of radius b by a cage of M

vertical elements each of radius b, along a circumference of radius b. Best results are

obtained by bw = b/M so that the vertical elements have the same total surface area as the
original element [27, 28]. Rotational model representations of a vertical dipole element and a
monopole element with a radial wire ground plane - all in proximity to earth - are shown
in Figures 4 and 5, respectively. In Figure 5, the number of rotations M is equal to the
number of radial wires, and the radius of the rotational vertical elements is equal to the radius

b, of the radial wires.

4.3 INTERPRETATION OF OUTPUT PARAMETERS

When the rotational model is not used (M = 1), the output parameters represent those of
the physical antenna. However, when the rotational model is used, the output parameters are
those of the rotational elements and not those of the physical antenna. The algebraic
operations required on the rotational model output parameters to obtain the output parameters
for the physical antenna are summarized in Table 7.

4.4 COMPARISON WITH OTHER MODELS

4.4.1 LLNL Validation Efforts

LLNL has compared NEC-GS numerical results with theoretical results based on the
compensation theorem by J. R. Wait and W. A. Pope for the input impedance of a quarter-
wave monopole on a buried, radial-wire ground plane [10]. Good agreement was obtained
between the two models only for those cases where implementation of the compensation
theorem is expected to be valid, namely, for groundscreens of sufficient density (the number
N of radial wires is large) and of sufficient extent (the length a of the radial wires are at least
a wavelength in Earth). Unlike the NEC-GS method-of-moments model, the present
implementation of the compensation theorem never solves the current on the ground plane,
but instead assumes that the current distribution is the same as for a perfect ground plane.
The inadequacy of the present implementation of the compensation theorem to yield accurate
results of input impedance for small ground planes in proximity to earth was also pointed out
by J. H. Richmond [191 when comparing his method-of-moments results for disk ground
planes with results based on the compensation theorem by Wait and Surtees [29].

4.4.2 Comparison with NEC-3

This subsection compares numerical results obtained from NEC-GS with those obtained
from NEC-3.

The test case, in the NEC-GS user's guide [7], is for a monopole element with six buried
radial ground wires that have the same radius as that of the monopole element. Test case
numerical results, obtained from NEC-GS with no rotations (M = 1), agree to within 0.01
percent of those obtained from NEC-3 (see Table 8).
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Table 7. Algebraic Operations to Obtain Output Parameters of Physical
Antenna When Using a NEC-GS Rotational Model with M Rotations

Operation Required on the
Output Parameter of Physical Antenna Rotational Model Output Parameter

Current on vertical element (amperes) Multiply by M

Current on radial wire (amperes) As printed out
Input impedance of vertical element (ohms) Divide by M

Input admittance of vertical element (mhos) Multiply by M

Radiation efficiency* (numeric) Divide by M

Gain (dB) Subtract 10 loglo M
* Radiation efficiency = one-half of printed out value of average power gain for cases when the antenna

is in proximity to lossy earth

Table 8. Comparison of Numerical Results Obtained from NEC-GS (M = 1) with Those
Obtained from NEC-3 for Monopole Element with a Buried Radial-Wire Ground Plane

Test case in G. J. Burke, "User's Guide Supplement for NEC-GS," Lawrence Livermore National
Laboratory, Report UCRL-MA- 107572, June, 1991.

Output parameter Numerical value

NEC-GS NEC-3
Element input current (amperes) 1.4279 E-2 - j7.7917 E-3 1.4278 E-2 - j7.7928 E-3
Radial wire input current (amperes) 2.279 E-3 - jl.375 E-3 2.2824 E-3 - jl.3754 E-3
Element input impedance (ohms) 5.3964 E+l + j2.9446 E+1 5.39628 E+1 + j2.94524 E+1
Radiation efficiency (numeric) 0.291 0.291
Peak power gain -0.27 dB -0.27 dB

Direction of peak power gain 65 deg 65 deg

NEC-GS numerical results are compared with NEC-3 results in Tables 9 through 11 for a
dipole element and for thin and thick monopole elements with six buried radial ground wires,
respectively. The corresponding NEC-GS rotational model geometries for these antennas are
given in Figures 4 and 5, respectively. The numerical results for NEC-GS with no rotations
(M = 1) are almost identical in all cases to NEC-3 numerical results as is to be expected,
since the model geometries are identical. Numerical results for NEC-GS rotational models

(M >_ 2) have mixed agreement with NEC-3 numerical results.
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The NEC-GS rotational model for the dipole element yields numerical results that are in
almost exact agreement with those from NEC-3 when M = 100, corresponding to the case
when the total surface area of the dipole rotational elements is equal to that of the physical
dipole (see Table 9). For M = 4, the element input current differs by 25 percent from that
from NEC-3 although other output parameters are in close agreement with NEC-3.

Table 9. Comparison of Dipole Element Numerical Results Obtained from NEC-GS
Rotational Models (M = 1, 4, 8, 12, 16, 100) with Those Obtained from NEC-3.

h/k = 0.250, b/X = 1.667 x 10-4, bw/?k. = 1.667 x 10-6, Izol/l = 0.130, N = 21 segments
Er = 10.0, a = 0.01 S/m, f=5 MHz (X=60m)

Radiation Pover Gain
Efficiency (after Sub-

Element Input Element Input (Numeric tracting
Current Impedance after 10 Iogl0M)

(Amperes after (Ohms after Dividing Peak (dB)
Model Multiplying by M) Dividing by M) by M) Direction (deg)

0.12 dB
NEC-3 0.712 E-4 + jO.155 E-2 0.296 E+2 - j0.644 E+3 0.306 67 dB

67 deg
0.12dB

M = 1 0.715 E-4 + jO.155 E-2 0.296 E+2 - jO.642 E+3 0.306 67 dB
1 67 deg

0.13 dB
M = 4 0.532 E-4 + J0.134 E-2 0.294 E+2 -j0.742 E+3 0.307 0 dB

68 deg
0.12 dB

M = 8 0.632 E-4 + j0.146 E-2 0.294 E+2 - jO.682 E+3 0.306 67 IdB

GS M = 12 0.665E--4+jO.150E-2 0.295E+2-j0.665E+3 0.306 0.12dB
______67 deg

0.12 dB
M = 16 0.681 E-4 + jO.152 E-2 0.295 E+2 -jO.657 E+3 0.306 dB

67 deg
0.12 dB

M = 100 0.712 E-4 + jO.155 E-2 0.295 E+2 - jO.643 E+3 0.306 67 dg
I I 1 1 67 deg

The NEC-GS rotational model with M = 6 for a thin monopole element with six buried
radial ground wires yields numerical results that differ from those for NEC-3 by eighteen
percent for the monopole input current, by nineteen percent for the radial-wire input current,
by twelve percent for the input impedance, by eleven percent for the radiation efficiency, and
by 0.5 dB for the peak power gain (see Table 10). The total surface area of the monopole
rotational elements is six percent (Mbw/b = 6 x 1.667 x 10-6/1. 667 x 10- = 0. 06) of that of the

physical monopole.
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The NEC-GS rotational model with M = 6, for a thick monopole element and radial wires
whose diameters are ten times larger than tl-ose in Table 10, yields numerical results that
differ from NEC-3 by six percent for the monopole input current, by seven percent for the
radial-wire input current, by two percent for the input impedance, by six percent for the
radiation efficiency, and 0.3 dB for the peak power gain (see Table 11). It is not clear why
close agreement with NEC-3 (within six percent) is obtained for the thick monopole element
whose rotational elements have the same total surface area relative to the physical element as
for the thinner element in Table 10.

Table 10. Comparison of Numerical Results Obtained from NEC-GS Rotational
Models (M = 1, 6) of a Thin Monopole Element with Radial-Wire Ground Plane

with Those Obtained from NEC-3.

h/). = 0.250, b/k = 1.667 x 10-4, N = 10 segments (GW, 2)
bw/,X = 1.667 x 10-6, N = 14 segments (GWI, Card 2), (yl, z1) = (0.8 m, -0.05 m)

(y2, z2) = (12.0 m, -0.05 m), Er = 10.0, a= 0.01 S/m, f= 5 MHz (X = 60 m)

Numerical Value

Output
Parameter NEC-3 NEC-GS (M = 1) NEC-GS (M = 6)

Element input
current
(amperes, after 0.129 E-1 - jO.704 E-2 0.129 E-I - j0.704 E-2 0.106 E-I - jo.680 E-2
multiplying
by M)

Radial wire input
current 0.195 E-2 -J0.)31 E-2 0.195 E-2 - J0.131 E-2 0.158 E-2 - J0.124 E-2
(amperes, as
printed out)

Element input
impedance 5.980 E+1 + j3.272 E+I 5.980 E+I + j3.272 E+l 6.695 E+I + j4.307 E+I
(ohms, after
dividing by M)

Radiation
efficiency 0.263 0.263 0.233
(numeric, after
dividing by M)

Peak power
gain (dB, after -0.72 -0.71 -1.24
subtracting 10
loglo M)

Direction ot
peak gain 65 65 65
(degrees) -
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Table 11. Comparison of Numerical Results Obtained from NEC-GS Rotational
Models (M = 1, 6) of a Thick Monopole Element with Radial-Wire Ground Plane

with Those Obtained from NEC-3

h/A = 0.250, b/ = 1.667 x 10-3, N = 10 segments (GW2)
bw/X = 1.667 x 10, N = 14 segments (GWI, card 2), (yl, zl) = (8.0 m, -0.05 m)
(Y2, z2) = (12.0 m, - 0.05 in), er = 10.0, a = 0.01 S/m, f = 5 MHz, (X = 60m)

Numerical Value

Output
Parameter NEC-3 NEC-GS (M = 1) NEC-GS (M = 6)

Element input
current
(amperes, after 0.130 E-1 - jO.686 E-2 0.130 E-1 - jO.686 E-2 0.122 E-1 - jO.689 E-2
multiplying
by M)

Radial wire input
current 0.202 E-1 - J0.125 E-2 0.202 E-1 -J0.125 E-2 0.187 E-1 -j 0.125 E-2
(amperes, as
printed out)

Element input
impedance 6.015 E+I + j3.171 E+1 6.016 E+I + j3.171 E+1 6.223 E+1 + j3.523 E+1
(ohms, after
dividing by M)

Radiation
efficiency 0.279 0.279 0.263

(numeric, after
dividing by M)

Peak power gain
(dB, after -0.44 -0.44 -0.71
subtracting 10
logl0 M)

Direction of peak 65 65 65
gain (degrees)

4.4.3 Richmond's Method-of-Moments

NEC-GS results [33,34] (for a 128 radial-wire ground plane) are in close agreement with
results from Richmond's method-of-moments program RICHMOND4 [19,21,35] (for a disk
ground plane) when computing the radiation efficiency of a quarter-wave monopole element
wt-h a small ground plane on or in close proximity to medium dry Earth (see Figure 6).
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SECTION 6

CONCLUSIONS

This paper validates the NEC-3 and NEC-GS versions of the Numerical Electromagnetic
Code for wire elements (vertical dipoles with no ground plane and monopoles with radial-
wire ground planes) in close proximity to flat Earth.

The Fresnel reflection coefficient option of NEC-3 yields poor results for input current,
input impedance, and radiation efficiency. Correct results for directivity are obtained for the
case of an element (with no ground plane) in proximity to earth.

The NEC-3 Sommerfeld integral option, with its NEC-GS version, is probably the best
available model for monopole elements with radial-wire ground planes (just as Richmond's
method-of-moments program is the best available model for monopole elements with disk
ground planes) provided that the ground planes are not so large that the maximum matrix size
of the program is exceeded or that the computer run time is too excessive. Inaccuracies as
much as 25 percent or more occur in computing input current, input impedance, and radiation
efficiency for antenna elements in close proximity to lossy earth.

Version NEC-GS is a more efficient version of the NEC-3 Sommerfeld integral option
for wire antennas that have rotational symmetry in the azimuthal direction. The NEC-GS
rotational model gives close agreement with NEC-3 when the total surface area of the
rotational elements is equal to the surface area of the physical element. When this condition
is not satisfied, inaccuracies of ten percent or more can occur in input current, input
impedance, and radiation efficiency. The format for the field of the input parameters is
somewhat user-unfriendly because the omission of a concluding comma in the GR card
increases the number of radials by a factor of ten.
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Abstract - Field strength variations produced by an orbiting aircraft dual trailing wire VLF-
transmitting antenna are investigated. The towplane is assumed to be executing a circular
orbit at a constant altitude and speed. A steady-state mechanical model is adopted for
determination of the shape of the dual trailing wire antenna. The exact current distribution
on this antenna is calculated using the Numerical Electromagnetics Code (NEC) which is
based on a method of moments solution of the Electric Field Integral Equation (EFIE). A
propagation code developed at the Naval Ocean Systems Center (NOSC) called TWIRE has
been modified to be used in conjunction with NEC. This modified version of TWIRE has
been called TWIRENEC. The TWIRENEC code uses the current distribution information
provided by NEC to determine the dipole moments for a segmented antenna. The wire
segmentation geometry and corresponding dipole moments are then used to calculate the
electric field strength as a function of distance and azimuth in the earth-ionosphere
waveguide. The waveguide can be considered as either horizontally homogeneous or
inhomogeneous. It is demonstrated that the periodic variations in field intensity resulting
from an orbiting transmitter are a function of receiver position. These periodic variations
can range from a small fraction of a dB to several dB depending upon the location of the
receiver with respect to the transmitter. A point dipole approximation of the dual trailing
wire antenna is suggested for use in the study of VLF radiation excited by an orbiting
antenna in the presence of wind shear. The point dipole approximation is applied to estimate
the field strength variations caused by a yo-yo oscillation of the transmitting antenna as it
orbits. These yo-yo oscillations are characterized in terms of the change in verticality of the
point dipole which occurs over one complete orbit.
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I. INTRODUCTION

Kelly [1] investigates the VLF field strength variations resulting from an elevated and
inclined point dipole transmitting antenna travelling in a circular orbit. This antenna is an
idealization of a trailing wire antenna carried by an orbiting aircraft. The ionosphere is
considered to be homogeneous and isotropic in the earth-ionosphere waveguide propagation
model used for calculating VLF fields. An excellent discussion is presented on additional
complications which would be introduced by an anisotropic ionosphere.

Pappert and Bickel [2] present theoretical expressions for the vertical (E,) and
horizontal (Ey) VLF electric fields excited by point dipoles of arbitrary orientation and
elevation. Bickel et al. [3] and Bickel [4] apply these results to determine the VLF fields
produced by an arbitrarily shaped wire composed of a series of point dipole radiators, each
with the proper orientation, elevation and current moment. The field strength at any distance
away from the antenna was found by taking the vector sum of the contributions from each
point dipole. This extended source model was used to calculate the amplitude of vertical and
horizontal field components for various configurations of an airborne VLF trailing wire
antenna. Predicted values of the vertical field component E. for daytime and nighttime
propagation were generally found to be in good agreement with measurements. Pappert and
Hitney [5] describe a propagation code called TWIRE which streamlines calculations of the
type made by Bickel et al. [3] and Bickel [4]. One of the improvements incorporated into
the TWIRE code is the ability to determine the current amplitude from an assumed current
distribution and radiated power.

A modified version of the TWIRE code, called TWIRENEC, has been created by the
authors. The major difference between the two codes is in the way the current distribution
on the VLF antenna is determined. The TWIRE code makes the assumption that the current
distribution on the antenna is sinusoidal and relates the current amplitude to an assumed
radiated power. The TWIRENEC code uses the exact current distribution calculated by the
Numerical Electromagnetics Code (NEC) [6]. This current distribution is calculated using an
appropriate value of input power delivered to the antenna by the transmitter. This paper
presents and discusses some VLF propagation results obtained using the new TWIRENEC
code. In particular, this code is used to compute field strength variations caused by an
orbiting aircraft which is trailing a VLF transmitting antenna.

II. THEORY

The TWIRENEC propagation code was developed for calculating VLF fields in the
earth-ionosphere waveguide generated by antennas of arbitrary length, shape and elevation.
A flowchart of the TWIRENEC computer program is shown in Figure 1. The original
TWIRE subroutines COORD, RPOWER and FASTMC have been renamed COORD2,
RPOWER2 and FASTMC2 to indicate that they were modified for use in TWIRENEC.

The subroutine COORD2 reads the wire segmentation geometry and the
corresponding dipole moments from output files created by the NEC code. The wire
segmentation geometry is then transformed from the towplane coordinate system to the
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propagation coordinate system. Figure 2 is an illustration of the propagation coordinate
system. The direction of propagation is along the positive x axis which is at a bearing V.
with respect to magnetic north. The towplane is assumed to be orbiting at an altitude z = ZP

with an orbital radius of r = x+ y, and a constant velocity V. The position of the
towplane in its orbit with respect to the propagation axis may be described in terms of the
angle *,. One complete orbit of the towplane is characterized by a progression in the angle
Sfrom 00 to 3600.

The subroutine RPOWER2 calculates the time averaged radiated power from the wire
segmentation geometry and dipole moments which are output from COORD2. The
expression for radiated power used in this subroutine was derived by Pappert [7] assuming
thin antennas of arbitrary elevation and orientation above perfectly conducting ground. This
formulation is based upon segmentation of the wire antenna.

The mode sums for a horizontally inhomogeneous waveguide excited by an antenna
which is composed of W segments are [5]

E"'*(jAP7m) =QE E aV•bt a j + U1 Ja.) f(,
(In (1)

ep[ik (1)~ 7(x) - x))] F. p *I

where

w= W• exp(ikS("i7)xw [lln()cosY)

(inx aW (2)

+ n Q~,, I ,()siny. sin4o + )Q mýSnYCSýW

and

Q = 2.853 x 10-3. 312

SM= sin 0M
f = frequency (kHz)
k - free space wave number
a - radius of the earth
Z, = receiver altitude
w - wire segment index

('•yw) = midpoint coordinates for the w'h segment

(y.,) = orientation angles for the w' segment
M= dipole moment of the wtl segment (rms amp-meters)
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p waveguide slab number
j, m = mode indices
ON = modal eigenangle

a= cumulative mode conversion coefficients

ain = Kronecker delta function
E- electric field component at the receiver (n= 1 implies E,, n=2 implies

Ey and n=3 implies E1)

= modal height gain (f, is height gain for E,, f2 is height gain for E, and
f3 is height gain for EJ

A., - excitation factor ( 1. is the vertical dipole excitation factor, A.2 is the

broadside dipole excitation factor and 1a3 is the end-on dipole excitation
factor)

The wave propagation is assumed to be in the x-z plane with the x coordinate as the
range. The origin for the x coordinate is taken to be at the center of the towplane orbit
projected onto the ground. The z coordinate has its origin on the ground and is directed
positive towards the ionosphere. The midpoint of the w" dipole with current moment R. is
located at , with orientation 4, and y. relative to the x and z axis, respectively.
The aýa,) represent cumulative mode conversion coefficients fof a slab mode conversion
model in which x, is the beginning of the n& slab and with the first slab described by the
region x < x2. The physical interpretation of the cumulative mode conversion coefficients
are the accumulative conversion from a unit amplitude wave in mode m in the transmitter
region to modej in the pI slab. The electromagnetic field strength in the waveguide is
calculated along a propagation path by making use of the subroutine FASTMC2. FASTMC2
is essentially a fast mode conversion propagation code developed by Ferguson and Snyder
[8]. The subroutines PRESEG, MODEFNDR and SEGMWVGD are part of the Naval
Ocean System Center's Long-Wave Propagation Capability (LWPC) program. The LWPC
code is documented in Ferguson and Snyder [9] and in Ferguson et al. [10]. PRESEG is a
driver program which sets up files that provide the necessary input and calls to the
subroutines MODEFNDR [11] and SEGMWVGD [12]. Data files are set up by PRESEG as
input for MODEFNDR which obtains starting mode solutions for a specific segment on the
propagation path. The starting solutions determined by MODEFNDR are input to
SEGMWVGD. The SEGMWVGD program then extrapolates these solutions as the
waveguide parameters vary with distance from the transmitter. The resulting horizontally
inhomogeneous waveguide parameters are then input into the FASTMC2 program to be used
in the calculation of mode conversion coefficients and mode sums. The programs PRESEG,
MODEFNDR and SEGMWVGD can be used to find the waveguide parameters for a
horizontally homogeneous as well as a horizontally inhomogeneous waveguide. The mode
sums for the fields in a horizontally homogeneous waveguide (p= 1) excited by a W
segmented antenna are
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Ex' (pVWm) = QFj .2(zr)exp[-ikS~,1 )x]F,. (3)

A horizontally inhomogeneous waveguide model is more realistic than a model which is
horizontally homogeneous. This is because a horizontally inhomogeneous model can take
into account variations in the ground conductivity and ionosphere which may be present over
a propagation path.

Bickel [4] and Pappert and Hitney [8] have shown that the trailing wire transmitting
antenna can be approximated by a point dipole with the properly chosen current moment and
orientation. In most cases the altitude and orientation of the point dipole can be chosen to
correspond to the towline segment which contains the current maximum. The current on this
point dipole is chosen so that it has a radiated power equivalent to that of the trailing wire
antenna it is intended to replace. This is an important result because it implies that a
considerable reduction in computation time can be achieved by replacing the complex
structure of the trailing wire intenna with an appropriate point dipole.

One application where the point dipole approximation may be "seful is in the study of
propagation modes excited by a trailing wire which has periodic yo-yo oscillations. Yo-yo
oscillations in the long trailing wire antenna frequently occur and have been verified by
altitude measurements of a drogue located at the end of the wire [13]. In particular,
oscillations in the drogue altitude of several thousands feet with a period equivalent to the
orbital period have been observed. These yo-yo oscillations are believed to be the result of a
variation in the wind velocity as a function of altitude, i.e. wind shear. The point dipole
approximation suggests that a knowledge of the influence of yo-yo motion on the segment
which contains the maximum current should be sufficient to characterize the transmitting
antenna. Kelly [1] considers a model in which yo-yo produces a periodic variation in
inclination ef a point dipole antenna as it traverses a circle. The yo-yo motion is taken into
account by allowing the inclination angle y to oscillate about some average value y. as the
antenna orbits. This periodic change in inclination can be represented by

y = yo + A ysin(* + *d (4)

where *. is an offset angle in the orbital period of the inclination. The variable A y
determines the amplitude of the yo-yo induced excursions in the inclination. When Ay = 0
there are no oscillations in inclination which indicates that static conditions exist.

A reasonable assumption to make is that 00 < y. < 900 for the segment of the
trailing wire antenna which has the current maximum. A typical value of y. would be 45*.
It is physically realistic to assume that the change in inclination due to yo-yo must have the
vertical and horizontal as the two limiting positions of the point dipole, hence
00 : y < 900. In order to satisfy these conditions, A y must be restricted to lie within the
range given by
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0 o g A Y • A y .,.. = min (Y., 90* -Y ) (5)

At this point in the development it is convenient to introduce the concept of
verticality. Verticality is defined to be the ratio of the vertical projection of the wire antenna
to the total length of the antenna, in percent. For example, consider a point dipole antenna
which is inclined at an angle yo from the vertical. The verticality Vo of this antenna is then

Vo = 100cosY. % (6)

The verticality would be about 70% for a point dipole inclined at an angle of 450 with

respect to the vertical.

The minimum and maximum angle of inclination which result from yo-yo motion are

Yi = Yo - A y (7)

YmU= Y, + A y (8)

The corresponding minimum and maximum verticalities are

Vfi. = 100cosy. % (9)

VY = 100cosymj % (10)

The change in verticality over one complete orbit is then

AV= V.M - Vw % (1)

Equations (7) - (11) can be used to derive an expression which relates the yo-yo oscillation
amplitude A y to the change in verticality A Y. This relationship is

Ay = sin-' i AYM (12)

[200siny. I

The bounds on A V can be obtained by substituting (12) into (5), which results in

0< AV < AV,,A.. = 200siny mrin (siny. , cosy.) (13)
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MII. RESULTS

Propagation characteristics of the 22 kHz dual trailing wire antenna shown in Figure 3
will be investigated in this section. Steady-state mechanical modeling codes, which are based
on an analysis by Huang [14] and Narkis [15], were used to arrive at the geometry of this
antenna. Projections of the antenna geometry onto the three principal planes along with the
orbital path are displayed in this figure. Under steady state conditions, the antenna is
assumed to maintain the same shape as it is being trailed by the orbiting towplane. The
towplane trailing the antenna configuration shown in Figure 3 is orbiting counterclockwise.
The length of the short and long trailing wires are 2680 feet and 19500 feet, respectively,
which corresponds to an electrical length of one-half wavelength (W/2). The altitude of the
towplane is 20500 feet, the orbit radius is 6073 feet and its speed is 199 knots. The
verticality of the short wire is 30.66% and the verticality of the long wire is 69.81%. The
field strength variations produced by this antenna as it moves around in a circle are of
particular interest. The current distribution along this antenna was determined using the
NEC code and assuming a 200 kW input power with a DC wire resistance of 4.5 Q /1000
feet. The presence of the aircraft was neglected in the modeling of the dual trailing wire
antenna system.

An easterly propagation path (q. = 900) over seawater is assumed in the analysis
presented in this section. The values used for conductivity and relative permittivity of
seawater were 4.64 S/m and 81, respectively. An exponential electron density profile of the
form [16]

N(z) = 1.46x10 7exp[(@3-0.15)z-Ph/] cm -3  (14)

was adopted. The parameters of this model were chosen as f = 0.5 kmn1 and h' = 87 kin.
This particular electron density profile has been shown to accurately predict nocturnal VLF
propagation to the east [17]. The geomagnetic field strength was taken to be 0.5 Gauss with
a dip angle of 500.

Figure 4 shows curves of the vertical electric field component E,, at sea level
expressed in dB above lV/m. The two curves shown in Figure 4 compare nocturnal
easterly VLF propagation at 22 kHz for an orbiting towplane at positions which are 900
(solid curve) and 2700 (dashed curve) with respect to the direction of propagation. A
relatively large difference between the two signals is observed at a distance of 1.7 Mm,
whereas a relatively small difference exists at 3.8 Mm. Figure 5 shows the orbital
dependence of the E, field component amplitude at a range of 1.7 Mm (diamonds) and
3.8 Mm (triangles) from the center of the towplane orbit. This demonstrates that it is
possible to get a considerable variation in the signal level at the receiver caused by the
orbiting of the towplane, in this case about 8 dB at 1.7 Mm. It is also possible, however, to
select a suitable receiver location for which the variations in signal level due to orbiting are
minimized (on the order of a few tenths of a dB at 3.8 Mm).
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Figure 6 shows a plot of the electric field component E1 as a function of distance for
an orbital position of 00 with respect to the direction of propagation (solid curve). The
dashed curve represents a point dipole approximation to the dual trailing wire antenna. The
point dipole was chosen to have the same altitude (4.976 kin) and orientation (y = 41.1640,
*o = -36.695*) as the segment containing the current maximum. Equation (6) can be used
to show that the verticality of this segment is around 75%. The point dipole current was
determined by requiring that the point dipole have the same radiated power as the trailing
wire antenna. The radiated power of the trailing wire antenna shown in Figure 3 was
calculated as 96.28 kW.

It was found that the resultant radiation fields in the waveguide are relatively
insensitive to the shape of the short trailing wire. This can be attributed to the fact that the
current which exists on the short wire is small in comparison to the current on the long wire.
Figure 6 demonstrates that reasonably accurate agreement can be obtained by replacing the
entire trailing wire antenna by a point dipole.

The point dipole approximation can be utilized to greatly simplify the study of field
strength variations caused by wind induced yo-yo oscillations in the trailing wire. For
instance, suppose that it is desired to ascertain the influence of yo-yo motion on the field
intensity of the dual trailing wire antenna shown in Figure 3. This can be accomplished by
using the point dipole approximation of this antenna (see Figure 6) to represent the steady-
state orientation for the point dipole yo-yo model described in the previous section. Table 1
lists the values of several parameters associated with this point dipole yo-yo model. The
parameters are calculated based upon an assumed change in verticality of 10%, 15%, 20%,
25% and 30%.

TABLE 1. POINT DIPOLE YO-YO MODEL PARAMETERS

y, A V. AV Ay. Ay Vo V0  Vd y._ ya
(0) M• M• (0) M° M• M• % (a) (0)

41.164 86.650 10 41.164 4.357 75.283 80.065 70.065 45.521 36.807

41.164 86.650 15 41.164 6.543 75.283 82.292 67.292 47.707 34.621

41.164 86.650 20 41.164 8.739 75.283 84.409 64.409 49.903 32.425

41.164 86.650 25 41.164 10.947 75.283 86.413 61.413 52.111 30.217

41.164 86.650 30 41.164 13.173 75.283 88.302 58.302 54.337 27.991
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Figure 7 contains plots of the vertical field strength as a function of distance for the
steady-state case in which there would be a 0% change in verticality over one complete orbit
of the towplane. The solid and dashed curves represent towplane angles of 90* and 270' in
relation to the direction of propagation, respectively. The point dipole results of Figure 7
compare favorably with the dual trailing wire results shown in Figure 4. Since there is no
change in verticality in this case (steady-state), the differences observed in the vertical
electric field component are strictly a consequence of orbiting.

The yo-yo model of (4) with *o•= 0° can be used to show that a towplane angle of
900 with respect to the propagation direction corresponds to the point in the orbit where the
verticality is the lowest. On the other hand, the verticality is highest when the towplane
angle is 2700. The signal levels associated with the positions in the orbit for which the
antenna attains the highest and the lowest verticality are compared in Figure 8 for
A V = 15% and in Figure 9 for A V = 30%. Figure 9 suggests that an orbital verticality
change of 30% would produce a significant variation in the vertical field intensity over nearly
the entire propagation path. Figure 10 shows the yo-yo dependence of EL at 2.6 Mm which
results from an antenna that undergoes a 0% (circles), 15% (triangles) and 30% (diamonds)
change in verticality as it orbits. Figure 11 shows the corresponding yo-yo dependence of EL
at 2.9 Mm, a point which is 300 km distant from 2.6 Mm. Figure 10 suggests that a
receiver located at 2.6 Mm would see very little variation in the vertical field intensity under
steady-state conditions. However, yo-yo motion of the antenna characterized by a 15% and a
30% change in verticality would result in field intensity variations on the order of 1.9 dB and
3.7 dB. respectively. Figure 11 indicates that, in the absence of yo-yo, the receiver would
see a variation in field intensity of about 4.8 dB. With the introduction of yo-yo, however,
the magnitude of these field strength variations increase. A 9 dB variation in field strength
results from an orbital verticality change of 30%. Figure 11 demonstrates that the steady-
state orbital dependence of the field intensity can be considerably magnified by dynamic yo-
yo motion.

IV. SUMMARY

The field strength variations associated with an orbiting aircraft which is trailing a
VLF transmitting wire antenna have been investigated in this paper. A steady-state
mechanical modeling code was used to determine the wire shape geometry of the orbiting
VLF antenna. The mechanical modeling code provided piecewise wire segmentation for data
input to NEC. This allowed the exact current distribution on the antenna to be calculated by
NEC. Finally, the output NEC current distribution was used by the TWIRENEC VLF
propagation code to compute the electric field strength as a function of distance, azimuth and
altitude in the earth-ionosphere waveguide.

A detailed discussion of the TWIRENEC code was presented in Section 2 of this
paper. The major advantage of this code is that, for a specified antenna input power, the
exact current distribution on the wire is used in the calculation of the radiated power and
associated mode sums. Propagation over paths in which the ionospheric or ground
parameters significantly vary is modeled by considering the earth-ionosphere waveguide to be
horizontally inhomogeneous. In this paper, the TWIRENEC code was used to model
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nocturnal easterly propagation over an all seawater path at a frequency of 22 kHz. Under
these circumstances, a horizontally homogeneous waveguide model was sufficient to
characterize the VLF propagation.

It was demonstrated that the entire segmented wire antenna can be approximated by a
point dipole with an altitude and orientation chosen to correspond to the segment which
contains the current maximum. A considerable reduction in TWIRENEC computation time
was achieved by using the point dipole approximation of the trailing wire antenna. This
paper combines the point dipole approximation with a yo-yo model in order to expedite the
study of field strength variations caused by wind induced oscillations in the trailing wire. It
was found that the steady-state orbital field strength variations tend to be localized, while the
variations caused by yo-yo motion of the antenna are global in character. Results indicate
that a magnification in the steady-state orbital dependence of the field intensity can be
attributed to a yo-yo motion of the antcnna.
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Figure 3. Dual trailing wire antenna steady-state geometry.
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Figure 4. The vertical field strength E, at sea level resulting from an orbiting towplane
with * = 900 (solid curve) and * = 2700 (dashed curve). Nocturnal
easterly 22 kHz propagation from the dual trailing wire antenna.
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Figure 5. A comparison of the orbital dependence of the vertical field strength Eý at
1.7 Mm (diamonds) and at 3.8 Mm (triangles). Nocturnal easterly 22 kHz
propagation from the dual trailing wire antenna.

86



120--

100

80 --

60-- -

40-

0 1 2 3 4 5

Distance from Center of Orbit in Mm

Figure 6. The vertical field strength E. at sea level resulting from a dual trailing wire
(solid curve) compared to a point dipole approximation (dashed curve).
Nocturnal easterly 22 kHz propagation.
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Figure 7. Vertical field strength E, at sea level as a function of distance for the steady-
state case (4V = 0%). The solid and the dashed curves correspond to

S= 900 and 4 = 270%, respectively. N octurnal easterly 22 kH z
propagation from a point dipole approximation of the dual trailing wire
antenna.
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Figure 8. Vertical field strength E, at sea level as a function of distance associated with
AV 15 %. The solid and the dashed curves correspond to *r = 900 and

* =270*, respectively. Nocturnal easterly 22 kHz propagation from a point
dipole approximation of the dual trailing wire antenna.
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Figure 9. Vertical field strength E, at sea level as a function of distance associated with
V= 30%. The solid and the dashed curves correspond to * = 90° and

= 2700, respectively. Nocturnal easterly 22 kHz propagation from a point
dipole approximation of the dual trailing wire antenna.
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Figure 10. Yo-yo dependence of the vertical field strength E, at 2.6 Mm. The circles
correspond to AV = 0%, the triangles to AV = 15% and the diamonds to
AV = 30%. Nocturnal easterly 22 kHz propagation from a point dipole
approximation of the dual trailing wire antenna.
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Figure 11. Yo-yo dependence of the vertical field strength E. at 2.9 Mm. The circles
correspond to AV = 0%, the triangles to AV = 15% and the diamonds to
AV = 30%. Nocturnal easterly 22 kHz propagation from a point dipole
approximation of the dual trailing wire antenna.
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ABSTRACT

The Numerical Electromagnetics Code (NEC) was used to evaluate the admittance and
the electric near and far fields of a monopole antenna mounted on a cubical box over a
perfectly conducting ground plane. Two models of the box, employing surface patches and
wire grids, were evaluated. The monopole was positioned at the center, the edge, and at a
corner of the box's top surface. NEC admittance results were obtained and good agreement
was found with experimental data and with results from PATCH, another independent
electromagnetic modeling code. Results are presented in contour and 3-D formats for the
near fields and polar format for the far field radiation patterns using surface patch and wire
grid models in NEC. Excellent agreement was obtained for both approaches in NEC after
finding the optimum number of patches and wire grid segmentation to obtain convergence.
This paper provides guidelines for convergence for both modeling approaches and indicates a
six-fold savings in run-time for the surface patch method. Furthermore, results are presented
in modern graphical format for near field compansoyis of the two NEC techniques.

I. INTRODUCTION

The Method of Moments technique is the theoretical basis for the Numerical
Electromagnetics Code (NEC), which is a code for the simulation and analysis of the
electromagnetic response of antennas and other metallic structures [1]. NEC is the computer
simulation tool that was used in this investigation of near fields.

Experimental and computational investigations were previously performed to
determine the admittance characteristics of a monopole antenna mounted on a cubical
conducting box of 0.1 m sides (X/3 at a frequency of 1 GHz) over a ground plane [2,3].
This simple geometrical model was used to simulate the basic shipboard topside environment
of a ship's superstructure. The antenna, a 6 cm monopole (V5 at the same frequency of 1
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GHz), was tested for three different mounting positions on the top surface. Experimental
data and numerically calculated results using the PATCH computer code of admittance for
the 6 cm monopole antenna were presented versus frequency. PATCH is a recently
developed frequency domain electromagnetic analysis code based on a Method of Moments
solution to the Electric Field Integral Equation (EFIE) [4]. In this code objects are moduled
by planar triangular patches which easily conform to surfaces and boundaries of general
shape and allow variable patch densities over the surface of the object. This code can model
open as well as closed surfaces which is a major advantage over previous Magnetic Field
Integral Equation (MFIE) patch codes which only could model closed surfaces.

In this paper, the Numerical Electromagnetics Code (NEC) is used to evaluate the
admittance and also the electric near and far field structure of the 6 cm monopole antenna
mounted on the cubical box.

Convergence results are obtained and presented offering possible guidelines for more
complex models. Also, this paper will present results of near fields for both surface patches
and wire grid models in NEC using modem graphical formats. Additionally, it has been
found in this paper that ý -ire grid models take as much as six times the run-time of like
surface patch models in NEC. It is hoped that all of these findings can form the basis of
useful guidelines for further modeling of complex objects using NEC.

II. BACKGROUND

The fields around an antenna may be divided into two regions, one near the antenna
called the near field or Fresnel zone and one at a large distance called the far field or
Fraunhofer zone [5]. The usually specified boundary between the near field and far field is
the distance, r=2D2/X where D is the maximum length of the antenna in meters and X is the
wavelength in meters. The distance from the surface of the antenna to this boundary is
called the near field region, while beyond this boundary the region is called the far field.
The near field region can be further divided into two subregions, the reactive and radiating
near field. The reactive near field usually extends to X/21 from the antenna's surface, while
in practice a distance of X is used to represent this boundary. The phase of the magnetic and
electric field is almost in quadrature in regions within a wavelength of the antenna (reactive
near field). Beyond the distance of a wavelength, the electric and magnetic fields are
propagating in phase (radiating near field) until the far field is reached. In the far field, the
shape of the field pattern is independent of the distance, while in the near field the shape
depends on this distance.

A description of the numerical codes used in this and the previous work follows.
PATCH and NEC are both method of moments computer codes based on either/or both the
EFIE or MFIE solutions of the full boundary solution of Maxwell's equations for current
density on either cylindrical conductors (wires) or infinitesimally thin flat plates (patches).
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PATCH, used in the work reported previously, will calculate both electromagnetic
scattering and radiation from objects of arbitrary shape using the EFIE method. This allows
modeling objects that are either open or closed and uses planar triangular patches conforming
to the surface of the body. The numerical implementation in the code uses subdomain basis
expansion functions placed on adjacent pairs of the triangular patches in the Method of
Moments procedure. Details concerning this formulation can be found in [6].

NEC, will calculate both electromagnetic scattering and radiation for thin-wire
structures of small cylindrical volume using the EFIE method or large closed voluminous and
smooth bodies using the MFIE method. For thin structures such as plates or objects which
have an opening, the EFIE method provides reasonable accuracy with wire grids having
adequate spacing density. A coupled hybrid approach of both EFIE and MFIE is used to
model structures containing both wires and closed surfaces and allows a connection of the
wires to the surface. Details concerning the derivation of these methods can be found in [7].
Other details involving the choice of the basis functions, current and charge conditions, and
capabilities used in NEC can be found in [8,9,10,11,12].

NEC and PATCH both will give solutions for current distributions as mentioned and
therefore impedance and admittance at the feedpoint of a voltage excitation. This paper
compares surface patch results from NEC with those from PATCH and measurements on
values of admittance versus frequency. Wire grid modeling comparisons for admittance
using NEC have been performed previously [13]. Furthermore, this work here computes
near and far field results which are produced with both wire grid and surface patch modeling
in NEC and it is hoped that they can be used to further validate PATCH and other codes.

Ill. RESULTS

The optimum model for complex structures can be estimated by varying the segment
and patch density and observing the results and the convergence of the solution [14]. In the
case of an edge-mounted antenna, the accuracy of the results is expected to depend upon the
size of the segments and patches near the edge. Smaller segments and patches are suggested
at edge areas since the current magnitude may vary rapidly in this region.

The numerical model of a cubical five-sided box of 0.1 meters per side was
constructed using NEC (the bottom was not included as a surface since the box was placed
on a perfectly conducting ground plane). A 6 cm monopole antenna was placed at the
center, at the edge (3.63 cm from center) and at a corner (5.14 cm on a diagonal from
center), as shown in Figures la and lb for vire grids and patches respectively.

The first part of the investigation checked the input impedance using NEC as patch
density was varied. The number of patches on the top of the box was varied in search of an
optimum value of surface samples, which would later be used for near field calculations.
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The top was subdivided to retain symmetry, as much as possible, and to closely match

positions of the antenna on the experimental model.

A. Monopole at the Center

The monopole was divided into five segments and placed at the center of the top
surface. The top surface was divided into 25 (5x5), 49 (7x7), 81 (9x9), and 121 (1 lxI 1)
patches. Varying the subdivision of the top surface in this manner provided convergence in
the results which can easily be seen in Figures 2a and 2b for conductance and susceptance,
respectively. Since the current density will change most rapidly at the connection of the
monopole, the subdivision of the connection patch is automatically divided by four. It was
found that convergence was obtained with the 9x9 subdivision and the correlation of NEC
and PATCH results with the measurements is quite good as shown in Figure 2c.

B. Monopole at the Edge

The monopole was attached to an edge at a distance 3.63 cm from the center which
corresponds closely to the actual configuration. The difference in distance for the position of
the monopole in the NEC model compared to the actual physical geometry is 0.13 cm. A
subdivision of the top surface into 81 (9x9) patches produced well-converged resul 4. In
Figure 3a are shown the NEC results as well as measurements and PATCH results. It can
be seen that good agreement is obtained with measurements and PATCH's conductance
values. NEC and PATCH have almost identical performance for susceptance as compared to
measurements.

C. Monopole at Corner

The 6 cm monopole in the NEC model was placed at the corner, 5.14 cm on the
diagonal from the center and fed at the base. The position of the monopole for the
experimental model was 5.15 cm. The top surface was divided into 121 (1 lxii) patches to
obtain well-converged results.

NEC and PATCH results compared to measurements are presented in Figure 3b.
NEC is in excellent agreement with PATCH and measurements in both conductance and
susceptance, and in the range of 1.15 to 1.40 GHz, both codes are virtually identical.

D. Near Electric Field

Near fields are more difficult to calculate in NEC than far fields. When calculating
radiation in close proximity to an antenna, terms in the field expressions with powers of li/r
(r is the distance from the origin of the antenna to the field point) are appreciable in
magnitude compared to the l/r dependent terms which are dominant in the far field. The
near field is thus very dependent on the charge density and the current while the far field is
mainly dependent on the current.
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For near field calculations, NEC computes the magnitude and phase of each
component, E1 , Ey, and Eý separately and a modification was made to also calculate the
magnitude of the peak electric field (E-Total) in (V/m), which is the vector sum of the three
components E,, E,, and E. Using the optimum models in NEC for the monopole at the
center (9x9 patches), at the edge (9x9 patches), and the corner ( lx II patches), the near
field was investigated.

In order to compare NEC near fields for the monopole on the box with known
theoretical understanding, we consider a linear current element I=Io0ei of length z oriented
in the z direction and with amplitude 10 located at the origin as in Figure 4. This antenna is
a known simple radiating structure but it will demonstrate basic properties of the near electric
field for all small linear antennas. The complete electric field intensity of the antenna is:

= ~ 1 j co O( + _I -jV ..)i~i
2n j F Cs r2(1)

4---- kOFE sin0 + r 2 + r3e i

The only part of the field dominant in the expression for the far field radiated power is that
part consisting of the terms varying as r%, that is

FE = jkAVOsin~e~ji 8  (2)
4trro

The parts of the field varying as r2 and r3 are important in the near field. Consequently the
terms that are functions of distance r of the E-Field in the above equations are:

(r rý +! ) along the x or y-axis (3a)

(A-2 + ) along the z-axis. (3b)

All the other terms are phase terms or constants. Generally, the magnitude of the electric
field has an r-dependence which can be expressed as:
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[E(r)I = c + ) along the x or y- (4a)

E r) I ( c ) along the z-axis (4b)

where c is a proportionality constant used to normalize the electric field to the starting
position.

FORTRAN programs were developed to plot the magnitude and phase contours of the
near electric field using NEC output data [14]. For reference, two simple antennas with
analytical results are examined: (1) a 0.15 m (X/2) dipole antenna in free space, and (2) a
0.06 m (X/5) monopole antenna over a perfect ground plane which corresponds to the same
monopole mounted on the cubical box. The near electric field contours are displayed in a
section of a plane in 3-dimensional space. The results are shown in Figures 5a and 5b. It is
seen that the shape of near electric field is the same for the dipole and monopole antennas.
The ratio of the maximum current for the dipole to the monopole as computed by NEC with
both fed from a 1 Volt excitation source is -7.0 dB. Therefore, absolute field values for the
dipole should be increased by 7.0 dB to make comparisons to the monopole fields with both
having the same current. The phase plots of the electric fields for the XV2 dipole and 0.06 m
monopole are shown in Figures 6a and 6b and show that both antennas have a smooth
spherical wavefront pattern.

NEC solutions of the near electric field of the monopole on the box center are shown
in Figures 7a and 7b for the magnitude of the total electric field and the phase of the E,
component. The formation of maxima and nulls can also be observed. A maximum occurs
at 600 in elevation from the box surface while a null is seen at about 300. The main lobe
starts to develop at a distance IX (0.3m) from the antenna. Beyond this point, the main lobe
has the same shape independent of distance. Within a distance of 2X the pattern shape has
not yet fully developed.

In order to gain insight into the electric near field variations and where the maxima
and minima occur, a 3-dimensional plot is presented in Figure 8. The plot displays a surface
whose elevation points represents field strength in the upper portion, and a normal
2-D contour plot *projection" in the lower portion. In this figure the vertex that corresponds
to the pointed "spike-like" area of the surface is the origin where the antenna is mounted.
The decay of the field as the observation point moves away from the monopole source is
expected. The null "trough" can easily been seen in this type of representation.
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Figures 9a and 9b show results for the edge-mounted monopole in the same format as
the center-mounted case. The following comments will amplify differences from the center
case and interesting features of the field distributions. The edge-mounted geometry provides
a larger planar surface (box top) in front of the monopole view plane and results in the
following differences with respect to the center-mounted geometry:

1. The z-axis peak field is somewhat greater at given distances from the box surface.

This is caused by a larger E component.

2. The elevation plane null is not as deep.

3. The phase contours for the z component show evidence of two close-in nulls, but very
small "phase wrinkles" beyond the near zone.

4. The contour plot depicts a more uniform field overall, with a less severe null.

The comer-mounted monopole near field plots are in Figures 9c and 9d. The fields for this
case fall in between the center and edge-mounted fie!d configurations. That is:

1. The elevation plane null is between the nulls of the other two configurations.

2. "Phase wrinkles" show one null, as does the center-mounted case, but it is not as
severe.

3. Contour plots indicate a wider field pattern with a fairly uniform distribution away
from the monopole.

E. Far Field

Far field radiation patterns were calculated and are presented in Figures 10a and 10b
(Monopole at center), 10c and 10d, (Monopole at edge), and l0e and 10f, (Monopole at
corner). In Figure 10a, the vertical pattern of the monopole at the center shows that the
maximum gain is very close to 5.15 dBi, the theoretical value for a monopole over an
infinite perfectly conducting ground plane. In Figure 10b, the horizontal pattern shows
omnidirectional radiation from the electrically small box-monopole configuration which is not
expected to contribute much directionality in azimuth.

The results of vertical and horizontal patterns for the edge-mounted monopole
(Figures 10c and 10d) and the corner-mounted monopole (Figures l0e and 10f) display
unsymmetrical patterns.
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F. Wire Grid Modeling

Solid surfaces can be modeled in NEC with a grid of wires, with the restriction that
the grid cells are to be small in terms of a wavelength. Wire grid modeling guidelines are
given in [1, 15,161. For the wire grid modeling technique, typical run-times of the box-
monopole configuration have been found to take up to six times those of the surface patch
models. The box of Figure 1 is modeled as a five-sided wire grid box of 0. 1 m (X/3 at 1
GHz) per side having cells of 0.0125 by 0.0125 meters. The 0.06 m monopole antenna was
divided into 5 segments and placed on top of the wire grid box at the center, edge (3.75 cm
from center) and comer (5.3 cm on the diagonal). The antenna was fed at the base segment
for all cases. The wire grid geometry of [13] was used for calculations of the near electric
field in the present study. This geometry produced good results for admittance compared
with experimental data [2,3]. Magnitude and phase contour plots of near electric field for
the wire grid box case with the same field point locations used in the surface patch model are
shown for the monopole mounted at the center. The excellent agreement of near fields
(Figures 1 la and 1 lb) for the wire grid box with the center-mounted monopole to those of
the surface patch model (Figures 7a and 7b) attests to the equivalence of the two numerical
models. Differences are less than 1 dB, a value which is difficult to measure. The other
wire grid cases for the monopole at the edge and comer also were compared to the surface
patch models and excellent agreement was likewise obtained with differences of I to 1.5 dB
[14]. The differences are expected to be attributed to a more accurate rendition of edge
effects for the wire grid model versus the patch model.

IV. CONCLUSIONS

The goal of this investigation was to accurately predict admittance, near and far fields
using the Numerical Electromagnetics Code (NEC).

Since few validation benchmark results for near fields were available, an exercise was
undertaken using NEC in order to determine optimum models. Box-like structures were
analyzed using surface patch and wire grid modeling techniques. The simulation models
consisted of a X/5 monopole mounted on the top of a V/3 box at three different locations:
center, edge, and comer. Optimum models were selected by varying the patch density on
the top surface of the box and observing the convergence of the solution and comparison with
measurements and PATCH results for input admittance, in order to ensure the validity of the
models and improve the confidence in near field predictions. Optimum NEC models for the
three different mounting geometries were found to be:

- CENTER and EDGE: 9x9 = 81 patches on top (0.0013 V2 patch area)
- CORNER: llxll = 121 patches on top (0.0009 V2 patch area)
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Even though edges are not modeled in the surface patch technique [1], this study proves that,
for positions very close to an edge, good results can be obtained by careful subdividing (no
special subdivision of smaller patches in the vicinity of the edge or corner was required).

Algorithms were developed to produce near electric field (magnitude and phase)
contours and 3-D plots [14]. The near field for the monopole on the box has similar
characteristics in magnitude and phase as the monopole over a ground plane except in the
region where nulls occur from box radiation and diffraction effects. The edge/corner-
mounted geometries produced slightly different near field contours compared to the center-
mounted geometry. Surface patch and wire grid models for NEC gave essentially similar
results for near fields.

Previously, generalized guidelines for near field modeling had not been developed for
NEC and the use of wire grid and surface patch modeling for near field determination was
approached with caution. Guidelines developed in this study, as well as the results of the
near field behavior of the monopole antenna on the conducting box, can be used for future
investigations on more complex structures.

The present study is an important step in the direction of modeling the effects of the
near field of antenna structures.
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THETA = 60.00 PHI = 30.00 ETA = 90.00

Figure la. Monopole at the Center, Edge, and Comer of the Wire Grid Box Model.

THETA = 45.00 PHI = 30.00 ETA = 90.00

Figure lb. Monopole at the Center, Edge, and Comer of the Surface Patch Box Model.
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Figure 3a. Monopole at Edge of Patch Box, NEC Admittance vs. Measurements and
PATCH Code.
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Figure 3b. Monopole at Comer of Patch Box, NEC Admittance vs. Measurements and
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Figure 6a. Z-Component, E-Field Phase Contours, Dipole X/2 in Free Space.

PHASE OF Z COMPONENT OF E-FIELO
MONOPOLE 6CM ON Z AXIS

OJER PERFECT GROUNO-FREO-1GHZ

0.01U o~sm 1.iU m.1 1.311. Lam
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Abstract

As modeling systems mature, they become larger, more complex,
and more difficult to maintain. Modeling tools increase in number
and complexity. Frequently they are written in different languages
and require data in different formats. Databases also increase in
size as modeling systems are applied to new and more complex
problems. Engineers spend large amounts of money trying to
integrate tools and data that are basically incompatible.
Unfortunately, budgets do not grow at the same rate as the
complexity of our modeling systems and databases. To maintain
productivity, it is necessary to design modeling environments that
can handle large amounts of data in flexible ways and are simple to
maintain and upgrade.

This paper describes a new environment developed by the
authors for the modeling of communication antennas based on a
relational database management system. This approach simplifies the
task of integrating a set of heterogeneous programs with
incompatible data formats. The relational database provides a
common store for all modeling objects including the antenna,
platform, ground, electromagnetic sources, currents, charges, and
fields, and model history. The database management system provides
the organization, storage, and retrieval functions and some of the
data input, validation and display functions for the antenna
models. The main advantages of this approach are its ability to
grow as new tools and capabilities are added, its portability to
other machines and operating systems, and the ability it provides
engineers to easily share data among themselves and with other
modeling applications.

This work was conducted for the Naval Ocean Systems Center as part of the Navy Summer Faculty Research
Program, a cooperative program with the American Association for Engineering Education (ASEE).

Introduction
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Engineers use both physical and numerical models to predict
the performance of communication antennas. Some of the numerical
analysis programs in use are based on the Method of Moments and
include NEC[1], MININEC[2], and Junction[3]. These programs are
intended for modeling arbitrary geometries defined by wire frames
and surface patches. They typically compute currents, charges,
impedances, electric and magnetic fields, and other antenna
parameters as output. Other numerical analysis programs are based
on the Geometric Theory of Diffraction (GTD) and Finite Difference
Time Domain (FDTD). GTD programs compute electric and magnetic
fields from arbitrary geometries composed of generic shapes such as
plates and cylinders. FDTD programs compute fields from partitioned
volumes and surfaces.

Besides an analysis program, computer antenna modeling
requires programs for inputting geometric, electromagnetic, and
program control data and for analyzing and displaying results. Many
of these support programs are sophisticated special-purpose tools.
Others are off-the-shelf products like CAD programs, spreadsheets,
and database management systems for inputting data, statistical
analysis programs and graphics programs for analyzing output, and
word processors and desk-top publishing systems for generating
reports. These programs are often written in different languages
and require input and output data to be in different formats.

Antenna models typically require large data sets for both
input and output. Besides the antenna, all or part of the platform
(ship, tank, jeep, airplane, etc.) may be required in the model. To
model a ship may require thousands of nodes, wires, and patches.
Many versions of the same model are often generated when
investigating various antenna configurations. Output is often
computed repeatedly over a range of frequencies for one or more
potential antenna sites. Furthermore, Method of Moments codes have
rigid requirements for model input. For example, there are
restrictions on wire radius, wire segment length, wire spacing,
number and angle of wires at junctions, size of surface patches,
and the total number of unknowns (nodes, wires and patches).
Therefore, users often have difficulty preparing and validating
input data sets, especially when these sets are large. In addition,
users may have difficulty converting data to the format required by
the analysis software.

An Integrated Environment

Many of these difficulties can be overcome by providing a
single integrated environment for antenna modeling. A current Navy
effort in this area is called the Numerical Electromagnetic
Engineering Design System or NEEDS[4]. NEEDS will combine existing
software tools into a single uniform environment. It will guide the
user through the steps necessary to build a model, validate the
model, compute currents and other EM parameters, and analyze and
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display results. It will convert data as needed, store intermediate
and final results, and document the history of models and their
various versions. It will facilitate the reuse and sharing of model
input and output. It will allow communication over networks for
remote processing. In addition, the system will be portable across
a variety of machine types and operating systems.

It is important to design NEEDS for maximum flexibility. It is
inevitable that additional analysis and support tools will be
added. It must be possible to modify the system easily in order to
integrate new tools written in arbitrary languages. This requires
that the major components of the system (model input,
electromagnetic analysis, output display, process control, and data
management) be implemented in separate independent modules. It must
be possible to use the data in ways not necessarily anticipated at
development time. Thus, data retrieval methods must be flexible. To
support a variety of analysis codes, the model geometries should be
represented by generic shapes from which wire frame or surface
patch models can be automatically generated as required by the
particular analysis codes used.

There are many issues to be addressed in building an
integrated system such as NEEDS. These issues include conceptual
model representation, partitioning algorithms for generating wire
segments and patches, model evaluation and validation, and user
interface designs. This paper, however, focuses on the issue of
data management. This is an issue that becomes more important as
databases increase in size and complexity. A significant amount of
time and money is now being spent maintaining large databases that
are basically incompatible. Methods are needed for handling large
databases in ways that will allow for the efficient sharing of data
among engineers and across tools and applications.

Data Management

A major problem with integrating heterogeneous programs is the
management of incompatible data sets. Each program in the system
typically uses its own internal files and has its own unique file
formats. Thus, there tends to be significant duplication of both
data and data-accessing routines. This duplication is inefficient
and can lead to serious inconsistencies in the data. In addition,
conversion programs are needed to translate files from one format
to another. One or more conversion programs may be needed between
each pair of programs in the system. The number of conversion
programs needed, therefore, generally increases as the square of
the number of programs in the system. Finally, data files tend tc
be difficult to modify. Any change in the format of a file requires
changes to all programs accessing that file.

One way to deal with these problems is to use a common
database. By using a common database, each item of data needs to be
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stored in only one place, and common data access routines can be
provided. Furthermore, conversion programs are needed only between
each program file and the database. Thus, the number of conversion
programs needed will grow linearly with, rather than as the square
of, the number of programs. This savings becomes more important as
the system grows. Finally, as we shall see, database languages
exist that make application codes less dependent on data file
formats.

Relational Databases

The leading database technology today is the relational
database[5]. Relational databases are known for their ability to
minimize data redundancy, provide flexible data representation, and
allow for efficient data access. A relational database organizes
data as a collection of tables. A separate table is used to
represent each type of object or "entity" in the database. Each
table has a fixed set of columns representing the characteristics
or "attributes" of each object type. And each row of the table
represents a single object or "instance" of that type.

For example, each node in a wire frame can be described by its
x-, y-, and z-coordinates (Table 1). An additional attribute,
called NodeNumber, is used as a key to identify each node
uniquely.

NODES

Node
Number X Y Z

1 0.0 0.0 0.0
2 0.0 0.0 1.5
3 2.8 0.0 1.5
4 0.0 2.8 1.5

A List of Nodes
Table 1

Tables also can be used to represent relationships among two or
more entities. Relationship tables combine the key attributes (such
as names or ID numbers) from two or more entities. For example,
wires can be characterized by the indices of the nodes at each end
of the wire (Table 2). Additional attributes, such as Radius and
Numberof_Segments, can be added to describe the relationship
further.
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WIRES

Wire NumberOf_
Number Nodel Node2 Radius Segments

1 1 2 0.001 4
2 2 3 0.01 2
3 4 2 0.002 4

A List of Wires
Table 2

Note that the columns labeled "Nodel" and "Node2" in the Wires
Table contain values of the key attribute (NodeNumber) appearing
in the Nodes Table. These attributes are called "foreign keys" in
the Wires Table. A foreign key points to a key in another table.

It is important to design database tables carefully in order
to reduce the number of blank spaces and the amount of redundant
information. Redundant information wastes space and can lead to
inconsistencies. A well-known process for designing relational
database tables is called "normalization". Normalization breaks
large tables into smaller tables so that each table describes a
single atomic entity or relationship. Relationships among tables
are preserved in the foreign keys. Smaller tables can later be
combined into larger tables, as needed, by using an operation
called a "join".

Both the Nodes Table and the Wires Table above are normalized.
Notice that when multiple wires end at the same node, there is no
need to repeat the x-, y-, and z-coordinates of that node. The
coordinates are stored only once in the Nodes Table and a reference
made to them in the Wires Table through the foreign keys. This
helps to maintain the consistency of the data if changes are made
to the node's coordinates.

Besides the database itself, a query language is needed for
organizing, storing, and retrieving values from a database. The
Structured Query Language (SQL) is an ANSI standard for relational
databases. SQL commands can be executed interactively or embedded
within a general-purpose programming language like C or FORTRAN.
SQL queries allow the user to retrieve any subset of the rows of
any table from any subset of its columns, as well as to combine
tables. SQL provides flexibility in allowing the user to retrieve
precisely the subset of data required. SQL is a non-procedural
language. That is, it describes what subset of data to retrieve
without describing how to retrieve it. This minimizes the amount of
programming required. It also ensures that the code that accesses
the data is independent of how the data is actually stored. This
"physical data independence" ensures that changes to the physical
structure of the database can be made without affecting the code
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that accesses it. Some examples of SQL queries are as follows:

EXAMPLE 1. The query

SE £CT SUM (Number ofSegments)
FROM Nodes, Wires
WHERE (Nodel = NodeNumber) AND (Z > 0.0);

retrieves the total number of segments on those wires
for which the first endpoint has a positive z-coordinate.
Notice that this query requires information from both
the Nodes Table (for the z-coordinate) and the Wires Table
(for the number of segments).

EXAMPLE 2. The SQL query

SELECT Wl.Wire Number, W2.Wire Number
FROM Wires W1, Wires W2
WHERE ((Wl.Nodel W2.Nodel)

OR (Wl.Nodel = W2.Node2)
OR (Wl.Node2 = W2.Nodel)
OR (Wl.Node2 = W2.Node2))

AND (Wl.WireNumber < W2.WireNumber);

finds each pair of adjacent wires (temporarily called
"Wl" and "W2") and retrieves their wire numbers. It
combines a copy of the Wires Table with itself. The result
is shown in Table 3 below.

WireNumber WireNumber

1 2
1 3
2 3

Query Result
Table 3

A complete database management system will provide
capabilities other than simple storage and retrieval functions.
These capabilities usually include multi-level security, backup and
recovery in case of software or hardware failures, concurrency
control to allow more than one user to access the database at the
same time, and indexing and clustering to speed up access to the
most frequently used data. Commercial database management systems
usually provide tools for creatirq user interfaces that facilitate
access to the database. And they allow database files to be
imported from and exported to other operating system and database
files.
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The ORACLE Relational Database Management System

The authors built a prototype of an integrated antenna
modeling environment based on a relational database management
system (RDBMS). The prototype demonstrates the feasibility of using
a RDBMS for providing the following data management capabilities:

• a central uniform data repository
• efficient access to the data, either directly

by the user or transparently through application
programs

• low-level data validation
' conversion of file formats between those used

by the database management system and those used
by the application programs

• documentation of the history of models and their
various versions and
archiving of models for long-term storage.

Low-level data validation involves checking constraints on the data
imposed by the conceptual model. Additional constraints on the data
imposed by specitic analysis programs are assumed to be handled by
the analysis software itself. Security, concurrency, and network
access were not considered to be important at this time.

We decided to use a commercial RDBMS for several reasons.
First, commercial systems are extremely reliable. Second, the user
interface tools provided by most commercial systems minimize the
time needed to develop and update application software. And third,
it would take many years to develop a system that would provide the
same functionality as that currently provided by commercial
systems.

There are many commercial RDBMS's on the market. ORACLE' was
chosen for this project to achieve some standardization with other
Army and Navy projects. ORACLE is a complete database management
system providing all the capabilities mentioned above. It runs on
a variety of machines under all major operating systems allowing
application software to be easily ported. Versions of ORACLE are
available that run over a network. ORACLE supports embedded SQL
commands in both C and FORTRAN.

Description of the Prototype

The prototype runs under MS-DOS2 3.3 and ORACLE RDBMS 5.1B on

1ORACLE is a registered trademark of Oracle Corporation.

2MS-DOS is a registered trademark of Microsok Inc.
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an IBM-PC 3 or compatible with at least one hard disk drive and at
least 256K of extended memory. The extra memory is required for the
ORACLE RDBMS. The PC version of ORACLE is a single-user system.

The central data repository is a relational database with pre-
defined tables. Users can directly access the database through SQL
commands or indirectly through application programs and database
forms. The database contains model input and output, model
histories, control data, and some intermediate model-derived data.

In addition to the database, the prototype includes the
following programs:

• the Junction code from the University of Houston
for computing currents, charges, far fields, and
near fields from models described by a combination
of wires segments and triangular surface patches

' an ORACLE menu for navigating through the system
' ORACLE forms for inputting data and displaying

results
' several C programs with embedded database queries for

converting between the ORACLE database and Junction's
ASCII formatted files and
a supervisory program written in C.

Included in the Junction code are routines for producing surface

patches from generic shapes such as cones, cylinders, and spheres.

During a typical modeling session, a user would

• define a new model or select an existing model for update
input or update the model geometry and electromagnetic data
including definitions of wires, surfaces, sources,
frequencies, and far and near field locations, as desired.

• select the desired output such as currents, charges, far
fields, and/or near fields

' request the system to compute the desired output
• view the output

The supervisory program ensures that programs are executed in
the correct sequence and that each program receives its data in the
proper format. The computation of output can be divided into
several phases: 1) creating wire segments and surface patches, 2)
computing additional geometry parameters such as the midpoint of
wire segments and locations of body-wire junctions, 3) computing
currents, and 4) computing charges, far fields and near fields, if
desired. Each of these phases can be executed separately and
intermediate results viewed. These phases must be executed in this

316M is a registered trademark of International Business Machines Corporation.
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order, but not all changes to the input require recomputation of
each phase. For example, a change in a source location requires
that the currents, and hence charges and fields, be recomputed, but
a change in a near field location requires only that near fields be
recomputed. To control the execution sequence, tables in the
database record which types of data have been defined by the user
and which types of data have been computed by the system. By
referring to these tables, the supervisory program prevents users
from attempting to compute output data before all prerequisite
input data have been entered, and it avoids computing data that are
already available in the database.

The user traverses the system by means of a menu. Menu and
sub-menu commands ultimately execute database commands, operating
system commands, database forms, or other application software. A
background menu, accessible from anywhere in the menu system,
allows advanced users to execute their own operating system or
database commands directly in order to accomplish specialized
tasks.

A form-based user interface facilitates input and output of
non-geometric data and geometric data for small models. Forms allow
for the entry of data independent of the analysis software. Forms
can do low-level data validation, such as type-checking and range-
checking, before data is committed to the database. This helps to
maintain the integrity of the database, and it provides immediate
feedback to the user when mistakes are made. Help messages and
default values can be provided for each field in the form. The
developer can designate certain fields as key fields which must
have unique values. Non-key fields can be designated as either
mandatory or optional. (Optional fields may contain null values.)
And user updates can be restricted to a subset of the available
fields, if desired.

Since these forms are closely integrated with the database,
they can perform functions not common to other forms software. For
example, forms can be designed to make simultaneous updates to
other fields, such as foreign keys, in other database tables (see
Example 2 below). This helps to maintain the consistency of the
database. The same form that is used to insert or update data in
the database can be used to retrieve data from the database. The
user performs queries by providing a value or a range of values in
one or more fields of the form. The form will then retrieve all
database records that include those field values. To allow
additional functionality, database operations and/or C code can be
tagged to certain events (such as updates, queries, or cursor
moves) that are executed when the user causes those events to
occur. These "triggers" are used for more advanced data validation
and housekeeping functions.

The following are some examples of the capabilities of
database forms. The form in Figure 1 references the Nodes and the
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Wires Tables discussed above.

NODES

Node
Number X (meters) Y (meters) Z (meters)

1 0.0 0.0 0.0
2 0.0 0.0 1.5
3 2.8 0.0 1.5
4 0.0 2.8 1.5

WIRES

Wire , Radius Number of
Number Node 1 Node 2 (meters) Segments

1 1 2 0.001 4
2 2 3 0.01 2
3 4 2 0.002 4

A Form for Inputting and Displaying Wires
Figure 1

EXAMPLE 1. To insert a new wire, the user types a value
for each field in the Wires Table and invokes the Insert
function. The form can verify that the two nodes
referenced by the new wire have already been defined in
the Nodes Table.

EXAMPLE 2. If the user wishes to change the index of
Node 4 to Node 5, the user changes the "4" to a "5"
under Node Number in the Nodes Table and invokes the
Update function. The form can propagate this change
automatically to the Wires Tables, so that Wire 3
would then connect Node 5 to Node 2.

EXAMPLE 3. To list all the Nodes in the database with
an x-coordinate greater than 0.5 meters, the user types
">0.5" in the X field of the Nodes Table and invokes
the Query function.

The prototype also records the history of models as they are
developed by the user. It allows the user to document different
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projects, several models belonging to each project, and multiple
versions of each model (see Figure 2). Each model is described by
a model number, model name, project name, the name of the person
creating the model, the date it was created, the number of versions
it has, and a textual description of the model. Each version is
described by a version number, the number of the model to which it
belongs, the date it was created, the date it was last updated, the
name of the file where it is stored, and a textual description. A
new version is created automatically after the user computes the
currents for the existing version. Thus, each time the currents are
computed for a group of frequencies, the input data become fixed
for that version. Any additional changes to the input data are
reflected in the new version.

PROJECT

MODEL 1 MODEL 2

Model Number Model Number
Model Name Model Name
Project Name Project Name
Creator Creator
Date Created Date Created
Versions Versions
Description Description

VERSION 1 VERSION 2 VERSION 3

Version No. Version No. Version No.
Model Number Model Number Model Number
Date Created Date Created Date Created
Date Updated Date Updated Date Updated
Filename Filename Filename
Description Description Description

The Description of Model Histories
Figure 2

Because of the limited memory of a PC, it would be difficult
to store input and output data for all versions in the database
simultaneously. Therefore, the database contains workspace for the
current version only, plus a catalog of past and current models and
versions. In addition, alternative sources, near field regions, and
far field regions can be stored in the database. Previous models
and their various versions are archived on disk and can be reloaded
from the on-line catalog as needed.
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Lessons Learned

A relational database management system proved to be well-
suited to this application. It was possible to develop a fairly
complex, modular system in a short time due to the database menu-
and form-building software and the use of embedded SQL commands in
application programs. These application-building tools also allow
the developer to provide the user with transparent access to
database. Thus, the typical user does not need to know that a
relational database exists or how it is organized.

ORACLE, however, is primary a business-oriented database
management system. Therefore, its query languages lack a complex
data type and such built-in functions as square roots,
exponentials, logarithms, and trigonometric functions needed for
scientific and engineering applications. Thus, embedded C code is
needed to perform these functions. A scientific database management
system would provide these as extensions of the SQL language.

Another disadvantage of the ORACLE RDBMS for some is its size
and cost. The database management system requires at least 1 MB of
main memory and about 9 MB of disk space in addition to disk space
for the database itself. Large amounts of memory and disk space,
however, are becoming much more affordable. And ORACLE's
portability and network capabilities may ultimately far outweigh
these disadvantages.

The most significant advantage of the relational database is
the flexibility that it provides. It allows data to be combined and
retrieved in many ways. As the modeling capabilities of the system
are extended in the future (to include, for example, loads,
transmission lines, or material types), it will be necessary to add
new tables or new columns of existing tables to the database. This
database extension, however, does not require changing either
existing data or existing code. As long as table and column names
are not changed, existing analysis programs and support tools will
still execute properly on the modified database.

It was difficult to keep more than one version of a large
model in the database at one time due to the memory limitations of
a PC. Therefore, the ability to make arbitrary comparisons of data
across different versions or models is not a built-in capability of
the system at this time. For advanced users, however, it is
possible to make such comparisons by accessing the database
directly. This requires knowledge of simple SQL commands in order
to create new tables and to move data from one table to another.

Any environment that generates so much data, however, should
provide for an efficient way to browse through the data, compare
data from different models and versions, and do other kinds of data
synthesis. In the future it would be advisable to run the database
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management system on a dedicated workstation or minicomputer as a
database server, so that numerous models and their various versions
could be kept in the database at one time. A more sophisticated
archival system is needed for expanding the work area as needed and
for automatically storing data on disk or tape as available memory
is used up.

Future Possibilities

It is anticipated that additional tools will be added to the
integrated system in the future. These include graphical input
programs for large geometries, 2- and 3-dimensional graphical
output display programs, a windows-based user interface, and
additional EM analysis tools, such as other Method of Moments (MOM)
codes, Geometric Theory of Diffraction (GTD) codes, and Finite
Difference Time Domain (FDTD) codes. Since this prototype was
developed, ORACLE Corporation has marketed an interface for
Microsoft Windows4 3.0 that will also allow developers and users
to access ORACLE data from most Windows applications.

Different analysis codes (MOM, GTD, and FDTD) require slightly
different input in different formats to model the same physical
objects. In the past, as new antenna analysis programs were
developed, new special-purpose tools were written to support model
input. Thus, there is a need for tools that input and store generic
objects that can be adapted to any analysis tool. This would allow
input objects to be used with many different codes in many
different applications. These codes could be modified to access the
database directly thereby eliminating the need for file format
conversion programs. Substantially the same tools are also needed
to display such output as currents, charges, far fields, and near
fields regardless of the program that generates this output. This
need for reusable tools will become more important as the tools
become more sophisticated and as integrated systems become larger.
A common database format for describing geometries would facilitate
the realization of this goal.

Finally, advantages can be foreseen for using standard
databases and standard query languages in order to interface with
other modeling systems. For example, data generated numerically on
the computer could be more easily compared with data measured from
physical antenna models if a common data format were used. This
also would facilitate the integration of software for antenna
modeling with software such as COEDS[4] for modeling entire
communication systems. The use of a relational database management
system that is widely portable can be an important step toward
creating sharable data among such related applications.

4Microsoft Windows is a trademark of Microsoft Corporation.
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An Application of the Hybrid Moment Method/Green's Function
Technique to the Optimization of Resistive Strips

R. Craig Baucke
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Cincinnati, OH 45215-6301

Abstract - An automatic method of synthesizing resistive tapers is developed.
This method embeds a hybrid moment method/Green's function inside a
nonlinear optimization package. Using this technique, resistive tapers are
rapidly synthesized for complex scatterers which can consist of multiple
resistive strips, as well as large, arbitrary conducting regions. The method is
applied to the optimization of resistive tapers that reduce the diffraction from
conducting scatterers.

I. INTRODUCTION

Resistive strips are used in various applications to modify the
electromagnetic scattering characteristics of an antenna or scatterer. They are
used to reduce the diffraction from conductive edges or discontinuities [1-21,
approximate an infinite ground plane [3], improve the performance of a
compact range reflector [4], and attenuate energy in waveguide [5]. Even
greater control over the scattering characteristics of the structure are obtained
by tapering the value of the strip resistance [6,7].

While a physical-optics based method for synthesizing effective
resistive tapers has been developed by Haupt [8], it is only applicable for a
simple single strip geometry at E-polarization. The more general problem of
defining optimum resistive tapers for multiple strips in the presence of
arbitrary scatterers for arbitrary polarization is usually done in a trial and
error fashion using established tapers as a starting point. The effectiveness of
the proposed taper is computed using the method of moments (MoM or MM)
or other numerical method (or measurements). While the trial and error
approach to resistive taper design has led to a database of "good tapers", this
approach is slow and may not result in the optimum taper, if one exists.

In this work, an automated method of synthesizing optimal resistive
tapers is developed. Resistive tapers are computed in a minimum amount of
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time within certain physical constraints. In effect, the trial and error method
is replaced by a nonlinear optimization technique which searches for an
optimal solution. The result is improved taper performance and drastically
reduced design times. To implement this concept, the hybrid MM/Green's
function (HMGF) technique described in [9] is applied to a moment method
which analyzes two dimensional conductive and resistive strips at both E-
polarization (TMz) and H-polarization (TEz). This approach is then
encapsulated within a nonlinear optimization program such as [10, 11]. The
resulting method rapidly computes the scattering levels from a number of
different resistive tapers and searches for an opti. - im configuration within
user defined constraints. This paper shows Ut the optimization of moment
method analysis is only practical due to the i., olication of the HMGF
technique. In addition, the simultaneous optimization of a resistive taper for
both polarizations is demonstrated, as well as the ortimization of multiple
tapers simultaneously.

II. MOMENT METHOD APPROACH

The choice of moment methods is critical to the efficiency of the
optimization process. For E-polarization, an efficient Galerkin method
developed by the author which utilizes pulse basis and pulse testing functions
for metal and resistive scatterers is chosen. For H-polarization, the method of
Liu and Balanis [12] has been enhanced to include resistive strips. This
method uses pulse basis functions and thereby creates fictitious line charges
at cell boundaries. In practice, the method of [12] provides fairly accurate far
field results as long as the cell widths are about 1/10th of a wavelength. Since
point matching is employed, it is very efficient.

Both the E-polarization and H-polarization moment methods use the
electric field integral equation (EFIE). While the EFIE allows for the analysis
of open structures such as resistive strips, interior resonances may exist for
closed perfectly conducting (PEC) structures.

The EFIE for each moment method is developed by relating the
incident electric field Ei to the total field Et and the scattered field Es by

(1) Ei(xy) = Et(x,y) - ES(x,y).

For resistive strips, the total field is defined as

(2) Et(x,y) = R(x,y) J(xy)

where R is the surface resistance and J is the surface current density.
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Substituting (2) into (1) and applying basis and testing functions yields

(3) (EiBiM)=(RJnPnBm)-(ESBiM)

where Pn is the basis function for the nth source cell, Bm is the testing
function for the mth test cell and Jn is the unknown current on the nth cell.
The first inner product on the right side of (3) contains the resistive term, and
is defined as

(4) AZ=(RJnPn'Bm).

The term AZ is nonzero when the domains of the basis and testing functions
overlap, and when the resistance of the source domain is nonzero.

Pulse basis and testing functions are applied for TMz polarization. In
this case,

(5) AZ = (RJnnn,nm)

where rl is the pulse function. This expression is nonzero when m=n and
contributes only to the diagonal terms of the moment matrix.

Pulse basis and point matching are applied for TEz polarization. In this
case,

(6) AZ = (RJnfln'8m),

which is also nonzero only for diagonal elements of the matrix. Since (5) and
(6) are nonzero only for diagonal elements of the moment matrices, when the
resistances of the cells are modified, only the diagonal terms of the impedance
matrix are changed, and only by a constant value. If other basis functions
such are piecewise linear (triangular) or sinusoidal are chosen, AZ is nonzero
for off-diagonal terms, and more matrix modification is required when
resistance values are changed.

Once the basis and testing functions are applied, (3) reduces to a matrix
equation Zx=B. At this point, the HMGF method is applied to the system
matrix.
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III. APPLICATION OF HYBRID MM/GREEN'S FUNCTION TECHNIQUE

To apply the HMGF method, the scatterer is divided into two sections.
One of the sections contains the portion of the scatterer where the resistance
could be modified in the optimization process. This section will be referred to
as scatterer 1 (or Si). The rest of the scatterer (the portion remaining
unmodified) is called scatterer 2 (or S2). This is shown in figure 1.

(Ei ,HI)

Scatterer 2S~x

Scatterer 1

Figure 1. An example: scatterer 1 and scatterer 2.

In figure 1, S1 is a resistive sheet and S2 is a perfectly conducting closed
triangular cylinder. The resistance of each cell on S1 may be modified while
S2 will remain unchanged. The system matrix Z is partitioned as

Z =I1Zl Z121
(7) Z21 Z22]

where Z1 1 contains the matrix elements in which the observation and source
points are located on S1, Z 1 2 contains the elements in which the observation
point is on SI and the source point is on S2, Z2 1 contains the elements with
the observation point on S2 and the source point on Si, and Z2 2 contains the
elements with the observation and source points on S2. The order of Z1 1 is
N 1 , where N1 is the number of cells on S1, and the order of Z2 2 is N 2 , where
N 2 is the number of cells on S2.

Performing the linear algebra described in [9], the matrix equation is
reduced from order N1 + N 2 to order Ni and reformulated as
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)(Z1 -Z1 2 Z21Z 2 1)I1 = B1 - Z12Z -1B2
(8)222

where B1 is the excitation vector for Sl, B2 is the excitation vector for S2, and
I1 is the current solution for S1. The solution current on S2 can be found
from

12 = Z2B 2 - Z•jZ 2 1I1

The monostatic and bistatic scattering from the combination of S1 and S2 can
be computed from the solution currents I1 and 12.

IV. APPLYING NONLINEAR OPTIMIZATION

In order to apply nonlinear optimization to this method, the echo
width of the scatterer is computed by solving (8) with the initial (first guess)
resistance values. This computation is three to four times slower than
analyzing the entire scatterer with a traditional moment method approach,
due to the computation of the complete Z 22 inverse and several matrix
multiplies. At this point, the inverse of the Z 22 matrix is stored, as well as the
Z 1 2 and Z 2 1 matrices. These matrices will not change in the following
optimization iterations.

Once the initial resistive configuration is analyzed, the nonlinear
optimizer computes new resistive values for the cells on S1. The system
matrix in (8) is recomputed by subtracting and adding values to the
appropriate diagonal terms. When the system in (8) is solved during
subsequent iterations, the matrix fill time is very small and the solution time
is drastically reduced compared to traditional moment methods. A
comparison of the CPU time required for optimization of this method and a
traditional moment method are shown in figure 2. These performance
figures demonstrate the feasibility of performing nonlinear optimization on
moment method calculations.
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Figure 2. Comparison of the CPU time required for optimization with and
without applying the HMGF technique.

The operation of the nonlinear optimizer requires the definition of a
penalty function, which is the function to be minimized. While this function
could be related to any quantity computed by the moment method (surface
currents, near fields, etc.), in this case the penalty function F is defined as

2 1 No
(10) F = _1 - Y_ a((i)

a= No j=1

where a=1 is TMz polarization, oc=2 is TEz polarization, No is the number of
monostatic angles, a is the echo width in wavelengths, and Oi is the ith
monostatic angle. The function F is essentially a sector average of the echo
width.

The optimizer attempts to minimize F by modifying the resistive
values on S1. A flow chart of the optimization process is shown in figure 3.
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constraints, and penalty function.
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Figure 3. Flow chart of the resistive taper optimization process.

The choice of nonlinear optimization routines is limited by the type of
function to be minimized. Since gradients of the function to be minimized in
this work (10) are difficult to obtain, optimization methods which do not
require explicit gradients are chosen. In addition, the resistance values of the
cells are constrained to positive values &hat can be manufactured (it is difficult
to accurately produce and measure resistive strips with resistances much
greater than 3000 ohms/square). Thus, a constrained optimization is chosen.

In this work, the rotating coordinates method described in [10] and the
Complex algorithm [111 are both applied. Both are direct search routines
which utilize different search strategies. As in the case of all nonlinear
optimizers, convergence to the absolute minimum is not guaranteed. To
avoid nonoptimal local minima, the optimization process is carried out with
different starting points and step sizes.
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V. RESISTIVE TAPER OPTIMIZATION APPROACHES

The method developed in this paper is applied to the optimization of
resistive tapers on S1 in two different fashions. In the first, the resistance
value of each cell is an optimization parameter, while in the second approach
the coefficients of a polynomial function are the parameters.

The first approach provides a very flexible approach to taper
optimization, but often results in resistive tapers which cannot be constructed
due to large fluctuations in the values of the resistances along the strips.
These fluctuations in the optimal taper can be reduced by constraining the
resistive values properly. However, it may still be difficult to create a smooth
taper by optimizing in this fashion, and the effective bandwidth of the taper
(the frequency range over which the taper has acceptable performance) may be
small.

In the second approach, polynomial optimization, the nonlinear
optimizer adjusts the coefficients of polynomials over each resistive taper in
S1. For instance, if the user chooses a quadratic polynomial taper,

(11) R(x) = ax 2 + bx + c (0 < x < 1),

coefficients a, b and c are modified by the optimizer. The variable x is the
normalized distance along the strip.

The natural result of this optimization is a smooth taper (with the
smoothness dependent on the order of the polynomial), as well as improved
bandwidth. However, the performance at the frequency of optimization will
probably be inferior to the first method. Thus, the first method is better for
narrow band designs, and the second method is better for broadband designs.
A comparison of the echo width and optimal taper computed by these two
approaches for an example problem consisting of a flat resistive strip in front
of a PEC is given in figures 4 and 5.
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Figure 4. Comparison of echo width for resistive strip optimization using
individual cell optimization and polynomial function optimization.
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Figure 5. Comparison of resistive taper functions for resistive strip
optimization using individual cell and polynomial function optimizations.

In figure 5, the optimal polynomial and individual cell values are
shown as smooth and piecewise linear functions, respectively. In the context
of the moment methods used in this work (5-6), the resistance of each cell is
defined as a constant. Therefore, the functions in figure 5 are approximated
by a set of step functions in the moment method discretization.
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VI. OPTIMIZATION RESULTS

The first of two simple example problems is shown below.

2 X Resistive strip 3X PEC strip 2 X Resistive strip

Figure 6. A single resistive strip scatterer.

In this problem, the leading and trailing resistive strips are optimized
at both TMz and TEz polarizations using a quadratic taper that is constrained
to resistive values between 3000 and 1 ohms/square. The initial values of
each resistive strip are 200 ohms/square with no variation along the strips.
The resistive strip scatterer S1 consists of 40 cells (20 cells on the leading edge
and 20 cells on the trailing edge), and the metal scatterer S2 is divided into 30
cells. Figure 7 compares the echo widths of the optimized scatterer to the
initial scatterer for TMz and TEz polarization. The penalty function in both
problems is the average monostatic echo width of the scatterer from +30 to -30
degrees, sampled every 5 degrees.
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Figure 7. A comparison of the initial and optimized monostatic echo width
from the scatterer in figure 6.

The resulting optimal quadratic taper on the leading edge strip is

(12) R(x) = 3000x 2 + 131x + 6

and the optimal taper on the trailing edge strip is

(13) R(x) = 2778x2 + 4x + 10.

where the zero value of x in (12) and (13) is located at the junction of the
corresponding resistive strip and PEC.

The optimization results in figure 7 require 496 iterations of the
resistive values and 150 CPU seconds on a VAX 6510.
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Both of the optimization techniques [10, 11] have been applied to this
example, yielding nearly identical results. The results in figure 7 are obtained
using the optimization method of [10].

In the second problem, another identical strip scatterer is placed 0.75
wavelengths above the original scatterer as shown in figure 8.

2 1 Resistive strip U~. PEC strip 2 X Resistive strip

01j 2 1 Resistive strip 31 PEC strip 2 X Resistive strip

Figure 8. Two parallel resistive strips.

In the scatterer above, the four resistive strips making up Si are
divided into 80 cells and the PEC strips making up S2 consist of 60 cells. The
same penalty function is used as in the previous example.

Figure 9 compares the echo widths of the optimized scatterer in figure 8
to the initial scatterer for TMz and TEz polarization.
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Figure 9. A comparison of the initial and optimized monostatic echo width
from the scatterer in figure 8.

The resulting optimal quadratic taper on the leading edge strips are

(14) R(x) = 3000x2 + 4x + 1 (upper)
R(x) = 2990x 2 + 4x + 3 (lower)

and the optimal taper on the trailing edge strips are

(15) R(x) = 1975x 2 + 12x + 12 (upper)
R(x) = 1065x2 + 14x + 4 (lower).

The optimization results in figure 9 require 430 iterations of the
resistive values and 534 CPU seconds on a VAX 6510.
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VII. CONCLUSIONS

In this work, an automatic method of synthesizing optimum resistive
tapers for multiple arbitrary resistive strips in any scattering environment has
been developed. The optimization is performed simultaneously for both TEz
and TMz polarizations. The results of individual cell and polynomial
function optimization are demonstrated and compared. The efficiency of this
method due to the application of the HMGF technique is shown. While two
dimensional results are shown here, this method could be easily applied to a
three dimensional moment method structure.
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Abstract

Parallel algorithms are presented that are suitable for the solution of the system of linear
equations generated by moment method problems on local memory Multiple Instruction, Mul-
tiple Data (MIMD) parallel computers. The two most widely used matrix solution algorithms
in moment method codes are described, namely the conjugate gradient (CG) method and LU
decomposition. The underlying philosophy of parallelism is briefly reviewed. Suitable parallel
algorithms are then described, presented in pseudo-code, their timing behaviour analyzed the-
oretically, and timing results measured on a particular MIMD computer - a transputer array
- are presented and compared to the theoretical timing models. It is concluded that efficient
parallel algorithms for both the CG and LU exist and that MIMD computers offer an attrac-
tive computational platform for the solution of moment method problems with large numbers of
unknowns.

Symbol Definition
tcomm Time to send one complex word

between adjacent processors.
t catc Time for a real floating point + or x.
/0 The ratio tcommtcalc

M Number of unknowns (dimension of the matrix).
N Number of processors.
d Depth of the binary tree.

Table 1: List of symbols used frequently in this paper.

1 Introduction

1.1 Background

It had long been accepted that the applicability of the moment method is limited by available
computational capability, in particular memory and speed of computation [1]. For a problem
with no special properties such as symmetry as a result of reflection, rotation, or translation, the
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Notation Definition
[A] The matrix A.
[A]T The Hermitian (complex conjugate)

transpose of matrix A.
aij The ij-th element of matrix A.
[x] The (algebraic) vector x.
Xi The i-th element of vector [x].

II[x]It The Euclidean norm of the vector [x] of
length n; II[x]ll = E7 I Ix,12.

lxi Absolute value of scalar x.
[x] The ceiling function of x,

i.e. the smallest integer > x.
A The Boolean AND operation.
mod(a) The modulo(a) operator.
O(Mn) Of the order of M'.

Table 2: Notation used in this paper.

computer time requirement grows at least as the cube of the number of unknowns, which is at
least linearly related to the electromagnetic size (length, surface area or volume, depending on the
particular problem and formulation) of the structure being simulated. The matrix equations to be
solved are in general complex, non-symmetric and full, although certain formulations - and also
physical symmetries, if present - may yield matrices with more structure. For problems which
are not small electromagnetically, this presents formidably large systems of linear equations that
must be filled and solved. The emergence of vector supercomputers has permitted the solution
of much larger problems than could previously be handled. These computers, epitomized by
the CRAY series, the first of which was installed in 1976, represented a tremendous increase in
computational resources for researchers with access to one. However, such systems are extremely
expensive, and not readily available outside the U.S.A., Europe and Japan at the time of writing.
There are also limits on the computational speed of such systems. This paper considers the use of
a different type of computer, the local (also known as distributed) memory Multiple Iistruction
Multiple Data (MIMD) computer; the algorithms described in this paper were run on an array of
INMOS T800 transputers, an example of such an array. Such MIMD systems offer performance
potentially rivaling that of the vector supercomputers, but require that the algorithms be very
carefully designed to exploit the parallel architecture and thus obtain something approaching the
manufacturer's claimed peak performance. ' This paper concentrates on the derivation, analysis,
implementation and testing of such algorithms, for the conjugate gradient (CG) and LU matrix
solvers, and is an extension of previous papers by the author [3, 4].

'The transputer array used in this paper does not deliver performance on par with conventional supercomputer
systems such as the CRAY machines already mentioned. However, in the light of the next generation of massively
parallel arrays - with hundreds or thousands of processors compared to the dozens used in this paper, and with
each processor running far faster than the transputers used here - the conventional supercomputer "now seems
poised for an indefinite but inexorable decline" [2, p.27].
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1.2 Parallel Processing

The fundamental principle underlying parallel (or concurrent) processing is that once the limits
on speed imposed by a certain computing technology have been reached, the most obvious way
of building a faster computer is to perform operations simultaneously. Two fundamental ways of
implementing parallelism have emerged, namely pipelining and replication. The former involves
overlapl) , parts of operations in time and is the approach taken by the vector supercomput-
ers; the latter provides more that one functional unit (e.g. CPU), permitting operations to be
performed simultaneously, and is the approach taken by such systems as arrays of transputers or
i860 processors. The historical background of parallel computers and a more detailed explanation
of pipelining and replication may be found in the author's tutorial paper [3], and with minor
revisions in [5, Chapter 3].

Several methods have been proposed to characterize parallel computers, but the most widely
used are speed-up and efficiency. Speed-up, S, is the ratio of time taken by an equivalent serial
algorithm running on one processor, T,, to the time taken by the parallel algorithm using N
processors, Tp. Efficiency, c, is the speed-up normalized by the number of processors. Formally,

S-Ts (I)
TP
SE-- (2)
N

S is usually bounded from above by N and E is hence usually bounded from above by 1 - although
under very special circumstances an efficiency exceeding 1 is at least theoretically possible [5,
Section 3.4.1). Speed-up is the fundamental issue of importance for the user - it states how
much faster his algorithm will run on N processors than on one. Efficiency is self-evident. The
most important requirement for a parallel program - other, obviously, than its correctness -

is to obtain the maximum possible speed-up, and thus also efficiency, from the available parallel
hardware.

At present a major effort is required by the user to properly exploit parallel processing, in par-
ticular for MIMD systems. Automatic vectorizing compilers have simplified the task for pipelined
vector computers, and similar tools exist for very small MIMD systems (with 2 or 4 processors),
but for large scale MIMD systems the user must frequently carefully select, analyse and imple-
ment suitable parallel algorithms. On some MIMD systems, some parallelized basic linear algebra
algorithms may be available, either from the manufacturer or from software companies, but this
was certainly not the case with transputer arrays. Even when such software is already available,
the timing models described in this paper should still be useful.

1.3 The Local Memory Message Passing MIMD Computer

The parallel algorithms and timing models considered in this paper have been developed for
a particular type of Multiple Instruction, Multiple Data (MIMD) computer, namely arrays of
INMOS T800 transputers. The algorithms have been implemented in Occam 2 to validate the
theoretical analysis. 2 However, the assumptions made regarding the computer are representative
of a substantial class of parallel computers, namely local memory message passing MIMD systems,
so the algorithms and timing analyses are applicable to other computers in this class.

2Occam is a parallel language based on the work of Hoare on Communicating Sequential Processes (CSP); see
[3] for more details. The transputer was designed to very efficiently implement the CSP paradigm.
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It is important to clearly indicate the properties of this type of computer, so that other
researchers with different hardware will be able to establish the suitability of the algorithms.
and where modifications to the theoretical analysis will be required, for their computers. The
MIMD classification was introduced by Flynn [6] and describes a computer consisting of a number
of nodes [7, p.485], each with at least a processing element, which operates independently on
its own local instruction stream and data. The further characterization of the machine as local
memory, message passing derives from the memory allocation and communication methods. On a
local memory system, all memory is divided up amongst the available processors, and a processor
may only directly access its own memory. Access to the memory on other processors is done
by explicit message passing, which is much slower than direct memory access. The problem of
memory contention that complicates the other main competing approach to memory allocation,
namely global memory, is removed with this approach, but the absence of global memory can
complicate the algorithm - an example will Ue given later in this paper. It is further assumed that
the computer uses explicit message passing over piocessor to processor communicationl channels
(links) - as opposed to communication over a common bus, for example - for all communication
(including both data and synchronization information). It is assumed that each processor has four
such links and these links can operate concurrently with high efficiency. This theoretical model
describes an array of transputers accurately. More details un transputer arrays may be found in
[3, 8, 9].

The algorithms derived in this paper use interconnection topologies requiring at most only
four links; the number of links required for both the mesh (four) and the binary tree (three) is not
a function of the number of processors. These topologies are illustrated in Figures 1 and 2. 3 Four
communication links are required to build a two-dimensional grid, a very useful general purpose
topology, so four is a reasonable lower bound on the number of links required. The hypercube
topology, [3, Section 6.2] and [7], has attracted much attention, and is possibly the most useful
general purpose topology currently in use. The hypercube has the attractive property that for a
given number of processors, the diameter (the maximum number of links required to connect any
two nodes) is smaller than for many other topologies; see [3, Table I]. However, the number of
inter-processor links grows as the dimension d of the hypercube; a hypercube of dimension d has
N = 2d processors. While this is a fairly slow (logarithmic - log 2 N) growth in the dimension, and
hence number of links required, as a function of .,c number of processors, this nonetheless imposes
limits for systems with a limited number of links. For example, transputer based hypercubes are
limited to 16 processors. Fox et. a]. have described a number of algorithms that run on hypercubes
[7]. Both the topologies (the binary tree and the two-dimensional mesh) used in this paper may be
mapped onto hypercube topologies (see [7, Chapter 19] and [7, Chapter 14] respectively), so the
algorithms to be described are also suitable for hypercube MIMD computers. It is possible that
fully exploiting the greater connectivity Qf hypercube machines may yield more efficient algorithms
than those presented here.

The theoretical results derived in this paper depend on only two machine dependent param-
eters, viz. the speed of computation and communication. The link concurrency discussed above
was exploited to varying degrees, and is discussed in the relevant analysis. The methods de-
veloped in this paper permit one to establish at least approximately, from the manufacturer's
specifications and benchmarking, whether particular parallel computer hardware will be suitable

'The mesh shown in Figure 2 has column wrap-around, but not row wrap-around. The reason for this is rather
subtle: a transputer array has to have one lirk connected to the "host" - typically a PC - and if row-wrap-around
was used as well, no spare link would be available. While it is possibl- to work around this problem, the coding
becomes rather messy. Exploiting full wrap-around would reduce the communication cost slightly, but with the
pipelined communication used in this paper, the improvement would not be very significant.
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3 4 6

Figure 1: Interconnection topologies - binary tree dimension 2.

for moment method solutions, and is an important step towards quantifying the performance of
parallel hardware for important algorithms in computational electromagnetics.

Other researchers [8, 10, 9, 11] have also addressed aspects of parallel processing in electro-
magnetics, all using transputers, and have shown impressive speed-ups and efficiencies. However,
these papers have concentrated o, measured results, rendering difficult the application of their
results to other types of processor arrays, as well as the extrapolation of the efficiencies of their
algorithms to larger arrays. Hafner's paper [8] deals with transputer hardware and software in
some detail, as well as the parallelization of a Multiple Multi-Pole program using an early parallel
FORTRAN compiler. Nitch's work was on the parallelization of the moment method code NEC2
using a mixture of Occam and FORTRAN. Cramb ct al. [9J used the processor farm paradigm
for what would be classified as a very "coarse grain" decomposition - essentially the same code
was run at different scan angles, with communication only between the controller and the worker
processor executing the specific set of scan angles. Russel and Rockway [I1] used the ParaSoft
EXPRESS operating environment, which provides a number of communications routines of the
type implemented explicitly in this paper. Their results for four processors were impressive, but
they do not address the scaling behaviour of the algorithm for more processors.

Computer technology moves so rapidly that any paper published giving absolute run-times
and computational benchmarks is out of date almost as it goes to print. A comparison of the
computational speed obtained with the algorithms described in this paper iunning on transputer
hardware with what hiay be expected from a typical workstation at the time of writing is given
in the conclusions of this paper; it must be emphasized that the main thrust of this paper is to
describe suitable parallel algorithms for the broad class of local memory MIMD parallel processors
-- of which the transputer is an contemporary example - and to develop methods for predict-
ing performance of parallel algorithms at least approximately, rather than promoting transputer
technology per se.

2 A Parallel Conjugate Gradient Algorithm

2.1 Iterative Algorithms and the Conjugate Gradient Algorithm

Over the past decade, much effort has been expended in the application of iterative methods, and
in particular the conjugate gradient and related algorithms, to computational electronmagnetics.
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Figure 2: Interconnection topologies - mesh (lattice) with column wrap-around. See text for
further discussion of the wrap-around.

Representative references may be found in Wang's recent book [12, p.68]. 4 Golub an--- 0' Leary's
paper provides a recent and comprehensive review of the mathematical history of the algorithm,
with an annotated bibliography [14]. A compact description of iterative methods in general and the
conjugate gradient algorithm in particular may be found in Jennings [15, Chapter 6]. Regarding
parallel iterative algorithms, very little appears to have been published on solvers for full matrices,
and what has been published has been frequently directed at different architectures, for example
the recent book by Dongarra et al. [16] on solving linear systems, which concentrates on vector
and shared memory computers.

The CG method, extended for the general case of a matrix [A] with complex entries where the
matrix is not known to be positive definite, is as follows [15, pp.220-221]:

[Uk] = [A][Pk] Step 1

ak = Tk Step2

[Xk+1] = [Xk] + ak[Pk] Step 3

[rk+1] = [rk] - ak[Uk] Step 4 (3)

[-k+ II= [A]T[rk+l] Step 5

fik = • Step6

[Pk+1] = [rk+1] + /k[Pk] Step7

with initial values [ro] = [b] - [A][xo] and [-0] = [po] = [A]T[ro]. This algorithm is suitable for
application to the matrix set up by the method of moments. Later in this paper, the question of

4There has been a long-running debate in the electromagnetics literature on the relationship of the "direct"
application of the CG method to the underlying operator equation as opposed to the use of the method as a matrix
solver for the matrix set up by the method of moments, see for examplr [13] and more recently [5, Chapter 2]. This
point will not be pursued further in the present paper, which is directed at the solution of the matrix equation set
up by the method of moments.
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Step Complex operations Real FLOP count

1 2M 2  8M 2

2 4M 16M

3 2M 4M
4 2M 4M

5 2M 2  8M 2

6 4M 16M
7 2M 4M

Table 3: FLOP count of conjugate gradient algorithm. M is the number of unknowns or equiv-
alently, the dimension of the matrix.

whether the convergence of the CG method justifies its application to a full matrix is discussed.
Note that there are a number of very closely related conjugate gradient algorithms; one recently

discussed in the electromagnetics literature is the bi-conjugate gradient (BiCG) method [17]. The
author has also implemented the BiCG algorithm; the modifications required to implement it have
very little effect on the timing analysis. While the BiCG algorithm sometimes accelerates conver-
gence [18], it can also slow down convergence or stagnate [5, Section 6.8],[17]. Pre-conditioning is
also widely used in the Finite Element community to accelerate the convergence of the CG method;
unfortunately, previous work by the author on the application of pre-conditioning indicated that
it was not suitable for moment method matrices [18]. The reason for this is not clear.

The floating point operation (FLOP) count per iteration is shown in Table 3, retaining only
the largest order term for each operation. (Because of this, a term -2M, with M the number
of unknowns, is missing in the real operations counts in both Steps 1 and 5; this comes from
the number of additions, which is actually M(M - 1), not M 2 . The impact on the analysis is
minimal; it is convenient to use the M 2 approximation for the parallel matrix-vector analysis,
and this also indicates clearly the difference between the parallelized matrix-vector products and
the unparallelized vector operations in subsequent results.) Note that ak and /3 k in Steps 3, 4
and 7 are real, not complex, and this affects the conversion from complex to real FLOPs. One
complex addition is equivalent to two real FLOPs and one complex multiplication is equivalent to
six real FLOPs; since it is the number of additions and multiplications that dominate the FLOP
count, and furthermore the addition and multiplication FLOP counts are almost identical, an
average factor of four can be used. (On most modern processors, the time required for a floating
point addition and a floating point multiplication are approximately the same: benchmarking the
transputer yielded exactly the same times for both operations.)

2.2 Parallel Matrix-Vector Products

From Table 3, the computationally expensive parts of the CG method can be seen to be the
two matrix-vectors products - Steps 1 and 5, of O(M 2 ) whereas the other steps are of O(M)
- hence efficient parallel matrix-vector product algorithms, taking into account the hardware
limitations discussed in the Intreduction, are required. (The work of Fox et al. discusses parallel
matrix-vector products for hypercube architectures [7, Section 21-3.4], and uses a decomposition
different from that considered here).

The product of a M x M matrix by a vector of length M can be considered from two viewpoints.
The first is as the forming of M inner products. These inner products can be computed in parallel.
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The second approach is as the forming of M2 products, followed by an accumulation process. The
M 2 products can be computed in parallel, and the accumulation process can be parallelized. The
computational dependence of both is very similar - detailed expressions will be shown shortly.
These viewpoints imply at least the following two possibilities foi forming a parallel matrix-vector
product:

* Row-block decomposition: Splitting up the matrix by row block, broadcasting the vector to all
processors, performing the inner products in parallel and then gathering together the different
parts of the vector split up over the processors

or

a Column-block decomposition: Splitting up the matrix by column, scattering the vector over
the processing array, performing partial inner products in parallel, and then accumulating
the resultant vector. This is a special case of the M 2 parallel product approach, with all
the elements of a column clustered (grouped) on a processor, and entire columns clustered in
turn.

The four communications paradigms required by the two different decompositions can be
formally defined as follows, assuming N processors and a matrix dimension of M:

1. Broadcast: This process broadcasts identical copies of the same vector to all the elements of
the array.

2. Gather. This process builds a vector up from its N disjoint sections of length MIN distributed
over the array after the parallel matrix/vector product.

3. Scatter. This process is the inverse of gather in that it scatters a vector over the array so that
each of the N processors has a different vector of length MIN.

4. Accumulate: This process accumulates the partial inner products resulting from the column-
block decomposition.

A graphical illustration of the operation of the two possible algorithms may be found in [31
and [5, Chapter 4], where the communication algorithms are also described in more detail.

The next stage of the development of a parallel algorithm is the identification of a suitable
topology, i.e. interconnection topology. This issue has been addressed in detail in [3], [5, Chapter
3], and also in [8], and the restrictions imposed by the transputer hardware have already been
discussed in the Introduction. Considering the type of communications required, the binary tree,
an example of which is shown in Figure 1, is a natural topology for this problem, for the following
reasons. It is only necessary to communicate information to and from the (controlling) processor
at the top of the tree from and to other lower level processors, and not from one side of the tree
to the other. Thus for approximately the same number of processors, the effective diameter of the
binary tree is actually one less than the diameter of the equivalent hypercube. The processor at
the top of the tree can either be used purely for co-ordinating the process, or can also share the
workload. The algorithm described here follows the former process. It is possible to use a ternary
tree - and the enhanced parallel communications will produce a more efficient algorithm - but
this does not map conveniently onto available arrays, where the available number of processors
generally follows some power of two. Thus the choice of topology is motivated not only by the
algorithm, but also by the available hardware, and typical configurations thereof.
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beginfbroadcast section: worker)
receive vector from higher processor
if (not at bottom of tree)

then
par

send vector to lower left processor
send vector to lower right processor

end(par}
else SKIP

end(if}
end{broadcast section: worker}

Figure 3: Pseudo-code for broadcast: worker process

Having identified the parallelism in the problem, the next stage of algorithm analysis is the
development of timing equations. These will allow the prediction of the speed-up and efficiency
defined in equations (1) and (2). The timing equations have been derived in [3] and [5, Chapter
4] and only the results will be presented. Defining the time required to send one complex word,
consisting of the real and imaginary parts - 8 bytes in single precision and 16 bytes in double
precision on a transputer, and indeed any system implementing IEEE arithmetic - from one pro-
cessor to another directly connected processor as tcomm, it may be shown that the communication
requirements of the matrix-vector product algorithms for M > 1 are as follows [3] and [5, Chapter
4]:

t 6roadcast = d t comm (4)

tgather = M[I - d/N] tcomm (5)

tsca tter = M[1 - d/N] tcomm (6)

taccumulate = Mdtcomm (7)

where d is the depth of the binary tree. Since the top-most processor is used purely for co-

ordinating the process, the number of worker processors is N = 2 d+1 - 2.
It is important to note that in deriving these results, it has been assumed that the communi-

cations parallelism available on a transputer has been exploited - this has been discussed in the
Introduction. Figure 3 shows an example of this for the broadcast primitive running on the worker
processors. The algorithms are most conveniently documented using pseudo-code - flowcharts
are very rarely used for parallel algorithms. The pseudo-code used, loosely based on Pascal, is
formally defined in [5, Section 3.7]. The meaning of the code should be intuitively obvious to

anyone used to high-level, structured languages. The only construct that may be new is the par
construct; the code stubs within par ... par{end} are executed in parallel.

Note also that there is a certain amount of computation that occurs after each communication
phase with the accumulate paradigm, arising from the addition of two vectors at each level; this
should be included in the overall compute time. The additional term is 2Md (the factor 2 arising
from the conversion from complex to real arithmetic). The use of pipelining, to be discussed later,
has not been considered here.
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The amount of computation involved in a matrix-vector product is A12 multiplications and
M(M - 1) additions. Thus the total amount of computation is approximately 2M 2 complex flops
or 8M 2 real flops. This is T., the time for the serial operation. The time for the parallel operation,
Tp(N), is the sum of the computation time for the parallelized matrix-vector product, viz. 8M 2 /N,
and the communication time for either the row-block or column-block decomposition. The details
of the derivation of the speed-up and efficiency have been given in [3]. Only the result for the
following important case will be shown. If n, is defined as the number of rows per processor,

S= •, then for N > 1, N • 2 d+1, hence d • log2N- 1, and the following approximate

formulae for c is obtained:

1
(8)

1 + 8- log2 N

where /3 = tcomm/tcaic is the ratio of communication to computation speed. tGacl is the time
required for a real floating point addition or multiplication. This formula is very important; it
indicates clearly that the matrix-vector product scales essentially with n-1, the inverse of the
number of rows per processor, and rather weakly (logarithmically) with the number of processors,
N. Hence, for a given n,, the efficiency is almost independent of the number of processors. This
prediction is confirmed by the measured results shown in Figure 7.

In reality, the dimension of the problem will not usually be an integral multiple of the number
of processors. This can be handled by either loading different processors differently or by padding
the matrix and vector with the necessary zeros. This can be incorporated into the preceding
a;-alysis by replacing n, by [n,]. The effect on a plot of the efficiency as a function of M (or nT)
is to replace the smooth curve implied by equation (8) by a stairstep function. This point will be
understood as read in the rest of the paper.

The actual run-time of the algorithm can be obtained approximately from t,"1-,"-2, indicating
the obvious importance of maximizing S for a given N.

2.3 The parallel CG algorithm

The timing analysis for the matrix-vector product of the preceding subsection can now be incorpo-
rated into a parallel conjugate gradient algorithm, and S and c predicted. The algorithm exploits
the complementary roles of the row- and column-block decomposition; the matrix-vector product
is done using the row-block decomposition and the (Hermitian) transpose matrix-vector product
is done using the column-block decomposition (with the necessary change of sign of the imaginary
part of the matrix entries). This avoids having to either explicitly form the matrix transpose
during each operation - a very expensive operation on a parallel processor with local memory,
since this requires an O(M 2 ) interchange operation at each iteration - or store an additional
copy of the Hermitian transpose of the matrix - and thus double the memory requirements of
the code. This important contribution was the author's [3], and has not been published elsewhere,
to the best of his knowledge. It is notable that an operation as simple as forming the transpose
of a matrix - a trivial interchange of indices on a serial processor - can pose a major problem
on a parallel system. Pseudo-code for the algorithm is given in Figures 4 and 5 for the master
and workers respectively. Only the matrix-vector products have been parallelized (Steps 1 and 5
in Table 3); the other vector update operations are performed on the master processor at the top
of the tree.

From Table 3, the serial time is

Ts = (16M 2 + 44M)tcai (9)
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process[master.cgJ
begin

initialization
while (not finished)

begin
broadcast p.k

gather u.k
compute alpha.k
update x.k+l and r.k+l

scatter r.k+l
accumulate r.bar.k+l
compute beta.k

update p.k+1
compute and print normalized residual
check termination

end
end{while}

end{process[master.cg)}

Figure 4: Pseudo-code for parallel CG algorithm: master process

process[worker.cgJ
begin

initialization

while (not finished)
begin

broadcast p.k
perform matrix-vector product
gather u.k
scatter r.k+l
perform transpose matrix-vector product
accumulate r.bar.k+l
check termination

end
end{while}

end{process [worker. cgJ}

Figure 5: Pseudo-code for parallel CG algorithm: worker process
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Precision Operation MFLOP/s
Single Addition 0.53

Double Addition 0.38
Single Multiplication 0.53

Double Multiplication 0.38

Table 4: Computation benchmarks on the University of Stellenbosch's T800 transputer array.

The parallel time is the sum of the parallelized matrix-vector products, the unparallelized vec-
tor operations and the additional computational overhead of the accumulate paradigm, and the
communication requirements of the broadcast, gather, scatter and accumulate paradigms:

T, = (16M 2 IN + 44M + 2dM)tcaic + (2M[1 -dIN] + 2Md)tcom,,m (10)

Forming the quotient of T. and Tp and simplifying yields

1 + 2.75M •,(11)

1 + V(2.75 + 0.125d + 8

Note that this result is actually the efficiency of one iteration; since by far the majority of time
required by the algorithm is in the iterative cycles, the algorithm as a whole can be characterized
by its performance per iteration.

Under the assumption M, N > 1, this can be simplified to

14;t N oNP (12)
1 + M(2.75 + 0.125d + (

Attention must be paid to correctly terminating parallel algorithms: if not done correctly,
certain processes will never terminate, and re-initialization of the array may be required before
any other code will load. In the code developed by the author, the termination criteria is that either
the normalized residual error must have decreased to less than the user-specified value or that some
maximum number of iterations must have been executed (the conventional criteria for an iterative
algorithm). The former can only be determined by the master processor. Hence it is necessary
for the master process, at the end of each iteration, to monitor the termination criteria. If one (or
both) of the termination criteria has been satisfied, then the master must explicitly inform the
workers, who then inform the lower level workers and terminate their execution. The configuration
program that loads the worker processors and correctly allocates software abstractions (channels
in Occam) to hardware (links on a transputer) for an arbitrary depth of binary tree also requires
attention; this is dependent on the specific language and configuration meta-language. A suitable
configuration for the Occam code developed by the author is given in [5, Appendix A].

This analysis requires two fundamental parameters to characterize the machine: the computa-
tion and communication speeds. The most reliable way of obtaining this data is by benchmarking -
actually measuring the performance of the system under conditions simulating those of the actual
code. Two simple benchmarks were developed: the first tested computation speed and the second
communication speed. Such benchmarking is necessary for any parallel computer; pseudo-code
useful for benchmarking local memory MIMD systems is presented in [5, Section 4.7]. Results are
shown in Tables 4 and 5. The parameter/3 can now be computed from the benchmark results
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Precision MBytels

Single 1.32
Double 1.39

Table 5: Communication benchmarks on the University of Stellenbosch's T800 transputer array.

Precision 7
Single 3.22

Double 4.37

Table 6: fi = tcomm/tcalc

for the case of single and double precision. The numerical values given in Table 6 are for the
transputer array used to generate the results that follow. 5

2.4 Results and Discussion

This section describes results obtained by the author using his Occam 2 implementation of the
algorithm. It was run on a 64 transputer array, developed in South Africa by the Council for
Scientific and Industrial Research. The array is known as the Massively Concurrent Computer/64
(MC 2/64, or MC 2in this paper). 6 The array has been described in [3, Section 4.1]. At the time of
running the timing tests, it was only possible to use half the array, for technical reasons: firstly, the
memory was not homogeneously distributed, and secondly, some problems with the inter-cluster
switching (from one "cluster" of 16 processors to another) were being experienced. These results
represent the experimental validation of the timing models developed. Although the pseudo-code
given in Figures 4 and 5 appears simple, much detail - especially in the communication routines
- is hidden, and the debugging was very time-consuming and tedious, due to the absence of
interactive parallel debuggers. This code was also developed before useful books on the subject
such as [7] were available.

Measured cfficiencies dx'e shuwrp in Figurc 6. ThcýEuetically, equation (11) predicts that the
efficiency should be a function mainly of the number of rows per processor, 7-, and a weak
function of d, the depth of the tree. These predictions are confirmed in Figure 7. Thus this
parallel CG algorithm exhibits a most desirable property - it scales with the number of rows per
processor. With a given number of rows per processor, the efficiency of the algorithm is a rather
weak function of the number of processors. The measured and predicted results for 30 workers are
shown in Figure 8. The maximum problem size is limited by the available memory; at the time
of writing a maximum of 64MB of usable memory was available.

It will be noted that in Figure 8, the measured and predicted curves agree very well regarding
the shape of the curve, but there is an offset between the measured and predicted curves. Similar
results - not shown in this paper - were obtained for other numbers of processors. It should be

5One of the reviewers queried these benchmarks. However, these results agree closely with those reported in
[8, Table I] for the FORTRAN benchmarks, when the off-chip RAM is used. Using on-chip RAM yields rather
faster results [8], but there is only 4kB of this, so any real application program has to use the off-chip RAM. The
computational benchmark was constructed to avoid measuring loop overhead.

"The name "Massively" seems rather presumptuous in retrospect, but when initially mooted, the system was
indeed massive.
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noted that the aim of the modelling is not to be able to predict the performance exactly in the
sense that one predicts an antenna's radiation pattern; the aim is simply to indicate trends and
determine whether the performance (efficiency) will be satisfactory for the problems of interest.
Furthermore, the predictions serve as a check on the correct functioning of the code. Possible
causes of the differences are latency (the time to initiate communication), loop overhead and
differences between the coding and the model caused by some usage restrictions in Occam. More
details may be found in [5, Section 4.8].

The measured data shown was obtained from PARNEC, a parallel version of the thin-wire part
of the moment method code NEC2 developed by the author in Occam 2 [5, Chapter 6]. Double
precision was used.

The efficiency of the parallel CG algorithm that has been described in this paper could be
further increased by exploiting communication pipelining, a concept that will be described with
reference to the parallel LU algorithm. Some further comments on improving the efficiency of the
algorithm will be made in the Conclusions of this paper.

3 A Parallel LU Algorithm

3.1 The Basic LU Algorithm

The LU method is probably the most widely used algorithm for the solution of square systems
of linear equations. Given a system with a moderate number of equations, it is usually the
best algorithm to use, provided that the system is not extraordinarily ill-conditioned. On serial
processors 7, LU decomposition followed by forward and backward substitution is always better
to use when solving a system of equations than forming the explicit inverse of the matrix [19,
p.3471. Given the fundamental role of the LU algorithm, the development of an efficient algorithm
suitable for a local memory MIMD array is an essential research topic for parallel computational
elect romagnetics.

Before considering the parallel version of the LU algorithm, it is necessary to review briefly the
serial form of the algorithm. The LU algorithm factors a matrix A into the product of an upper
(U) and lower (L) triangular matrix. The diagonal elements of L are most commonly chosen as 1
- although other choices are also useful, for example Choleski decomposition. 8 The algorithm
can be found in virtually any book on matrix algebra, for example [19, p. 359]. The algorithm
consists of M main steps. Step i, which computes the i-th row of U and the i-th column of L, is
repeated for i = 1,..., M - 2 and is defined as follows:
begin{Step i}

1 i-I

ti'i = -j.[aii - Z likUk,i]
S'i k=O

Repeat for allj=i+ ,...,M- 1:

1 i-I
ui6 = ji-[aij - I i,kUk,j] (13)

"i' k=O

I,., = -,[a,, - j ,kUk,] (14)
k=O

7it was brought to my attention by a reviewer that some researchers have concluded that this may not be true
on certain parallel systems such as the Connection Machine.

8Note that Choleski decomposition is only applicable to symmetric positive definite matrices [15, p.107]. Matrices
set up by the moment method do not generally have these properties.
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end{Step i}
aij, lij and uij represent the ij-th element of the [A], [L] and [U] matrices respectively;

i,j f {O, 1,... , M - 1}; M is the dimension of the matrix. The matrix entries have been numbered
from 0 to M-1 for coding convenience: an array a in Occam is numbered a0 , a,, ....

The algorithm requires special treatment for Step 0 and Step M-1 [19, p.359], and if at any
stage li,iui,i = 0, the algorithm is terminated with an error message to the effect that factorization
is impossible. Provided that the matrix is not singular, pivoting may be used in such cases -
and is advisable whenever the matrix is not known to be well conditioned. Pivoting is a strategy
to optimize numerical stability by ensuring that the largest (in some sense) element is on the
diagonal. Maximal column or partial pivoting and maximal pivoting [19, p.330-3] are two well-
known algorithms; the former involves searching the column below the diagonal, the latter the
entire active region, to use the nomenclature of this paper. Bisseling and van de Vorst [20] have
shown that partial pivoting may be incorporated into the parallel LU algorithm implemented in
this paper without a major effect on the efficiency of the algorithm; the effect on equation (22)
is to replace the ½ by 2. However, the coding becomes substantially more complicated than that
already required and is not at present incorporated into the author's parallel code.

Following the factorization of [A] into the product of [L] and [U], the unknown left-hand side
is solved for in a two-step process; the first step is forward substitution. Consider [A][x] = [b],
with A factored as [A] = [L][U]. Define [UI[x] = [z]. Now the system [L][z] = [b] can be solved for
using forward substitution, since [L] is lower triangular. Then [x] can be solved using backward
substitution from [U][x] = [z] since [U] is upper triangular.
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It may be shown that the timing requirements of LU decomposition are approximately 3 +
O(M 2 ) + O(M) additions and approximately the same number of multiplications; see [15, p.109].
The constants associated with the lower order terms are small integers, so for all practical pur-
poses, the amount of work required is 2M3 operations. The factor of 2 comes from the additions
and multiplications. Similarly, the dominant term in the time for forward substitution is M2

operations, and the same result also holds for backward substitution.

3.2 Previous Work on Parallel LU Algorithms

This discussion of the serial algorithm now leads to the question of the identification of the
parallelism in the algorithm. Compared to the CG algorithm discussed in the preceding section,
the parallelism is hardly obvious. Nonetheless, very efficient parallel algorithms can be developed.

Since LU decomposition is such a fundamental algorithm in linear algebra, much work ha'
been done, but very often the work is not applicable to the problem of a full matrix, without any
special properties. Brief reviews of parallel LU decomposition may be found in [21, 22]; a rather
more recent review paper is [23]. The present paper is based on recent work by van de Vorst and
Bisseling [24, 20]; the algorithm used is essentially identical to that of Fox et al. [7, Chapter 20],
although the very different approaches used to present their algorithms by Bisseling and van de
Vorst on the one hand, and Fox et al. on the other, make this similarity initially obscure. Van
de Vorst's work [24] is particularly difficult to read - cryptic is not an exaggeration for someone
unfamiliar with the use of formal methods in computer science - and Fox's work, while far easier
to read, is for a banded matrix, hence the difficulties in recognizing the similarity.

3.3 A Parallel LU Algorithm - a Graphical Description

The essence of the parallel algorithm is the following observation. Instead of waiting for Step i to
compute ui, and lj,i, as in the serial algorithm described in the previous section, the summations
in equations (13) and (14) may be performed as soon as data is available, given sufficient processors
(N = M 2 ). As an example, the first summation for each element of row 1 of U may begin as soon
as the relevant element of row 0 of U and column 0 of L is available. All the summations required
for row 1 may of course be performed in parallel, since there is no dependence within a row of (U]
or a column of [L] (other than on the diagonal element for the final division). Similarly, the first
summations for row 2, 3 etc. may also begin as soon as the results of row 0 and column 0 are
available. One could of course perform the serial algorithm in exactly the same way, but in the
serial case, nothing would be gained, and the algorithm would appear unnecessarily complex. The
required summations for row i of U and column i of L are thus computed using a series of partial
sums performed in parallel at each step which terminates in Step i. Hence the maximum degree of
parallelism in this algorithm is M 2. As will be noted shortly, the algorithm requires at least 2M
steps to execute. A more detailed explanation may be found in [4], which discusses in a tutorial
fashion the mode of thinking required to identify the parallelism inherent in the algorithm.

A parallel algorithm implementing the above is given in pseudo-code in Figure 9. This al-
gorithm assumes the diagonal elements of [L] to be 1. Note that the pseudo-code assumes M 2

processors; if this is not the case, then clustering is required. It should be appreciated that ef-
ficiently implementing the clustering and communications made the actual Occam code much
more complex than the pseudo-code shown. A matrix [X] is used in the pseudo-code; when the
algorithm terminates the upper triangular part of [XI is [U], and the lower triangular part of
[X] - excluding the diagonal elements, which are 1 by initial choice - is [L]. If the matrix [A]
is not needed after factorization, then as the computation of elements of [X] is completed the
corresponding elements of [Al may be overwritten.
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process Es,t]
begin

x[s,t] := a[s,t] {initialize matrix}
k := 0 {initialize global clock}
while k < n do

begin
if k < min(st) then

begin{active}
par

receive l[s,k] from process Is,k]
receive u[k,t] from process [k,t]

end{par}
x[s,t] := x[s,t] - l(s,k]*u[k,t]

end{active}
else if k = t AND s > t then

begin{critical}
receive u[k,k]
x[s,t] := x[s,t] / u[k,k] {note k=t in this case!1

send x[s,t] to all processes(s,q] with q > k
end{critical}

else if k = s AND s < or = t then
begin{pseudo-crit ical}

send x[s,t] to all processes[q,t] with q > k
end{ps eudo-crit ical}

else if k > min,s,t) then
SKIP {passive}

k :=k +
end

end{while}
end. { process(s,t]] }

Figure 9: Pseudo-code for the parallel LU algorithm; adapted from [24].
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The algorithm can be most easily understood graphically. Figures 10 to 12 show the evolution
of the algorithm for a matrix of dimension 3 on a 3 by 3 array of processors, i.e. one processor
per element, the upper limit of the parallelism that can be extracted with this algorithm. The .
and * represent elements that are critical i.e. in the last stage of computation. (The * represent
the row of [U] in the final stage of computation. The choice of the diagonal elements of [L] as
1 means that no computation is required, but the values must still be communicated, hence the
distinction and the name pseudo-critical, used in the pseudo-code). The o represents elements
that are active, i.e. forming the partial sums. Blank entries represent passive elements, where no
work is performed, since the relevant element of L or U has been computed in a previous step.
The echelons of completed elements step diagonally downward- in an almost wave-front fashion.

[000

Figure 10: Step 0 of LU decomposition

V 2

Figure 11: Step 1 of LU decomposition

Figure 12: Step 2 of LU decomposition

passive elements

e critical elements
* pseudo-critical elements
o active elements

It is useful to give an example describing how the algorithm given in Figure 9 and illustrated
in Figures 10 to 12 proceeds. It is assumed for this discussion that there are M 2 processors, i.e.
one processor per matrix element. The initialization of [XI = [A] establishes the first row of [U] -
actually before the algorithm has started. (This is because of the choice of diagonal [L] elements).

* On step 0, the first column (column 0) of [L] is computed, and then this column, as well as
the first row (row 0) of [U] is sent to all the critical processes so that the partial sums can be

162



a \ I

Figure 13: Communication in parallel LU algorithm, Step 0. The arrow symbols are defined in
the text.

computed. Note that by the end of step k = 0, the computations for the second row (row 1)
of [U1 have been completed.

" On step 1, the second column (column 1) of [L] is computed, and this column, as well as the
second column of [U], can be sent to all remaining critical processes so that ongoing partial
sums can be computed. By the end of step k = 1, the computations for the third row of [U]
(row 2) have been completed.

"* The algorithm proceeds thus, until k = M. (3 in this case).

Note that even given M 2 processors, at each step i, corresponding to one of the Figures 10 to
12, the algorithm given in Figure 9 needs two discrete computational "ticks": firstly, to compute
the i-th column of L - in parallel - and secondly, to then update the partial sums on the
active processors- also in parallel. Hence with M processors the algorithm will take 2Mt,,1 , to
terminate, assuming the times for floating point addition, subtraction, multiplication and division
to be similar.

Figure 13 shows the communications executed by the algorithm in Step 0. In this figure, the
j indicates communication to all the active elements of the column, and similarly the -* indicates
communication to all the active elements of the row. The \ symbol indicates both I and -.

Note how fine the grain of parallelism is compared to some other published applications; see
for example Cramb et al. [9]. They use a processor farm application for antenna array modelling,
and decompose their problem by scan angle, producing a parallel system requiring very little data
interchange: essentially data initialization, then collection of the finished computations. Such an
application is rather easier than those considered in this paper, since far less attention need be
given to highly efficient coding.

3.4 Topology, Clustering, Load Balancing and Communications

Given enough processors, the natural topology in the case of LU decomposition is a two-dimensional
mesh, reflecting the two-dimensional matrix. The row and column communication shown in Fig-
ure 13 can also be implemented very efficiently on such a mesh. However, as with the CG
algorithm, the problems of interest are large-grained, where many unknowns must be grouped (or
clustered) on each processor. A new problem, not present in the CG algorithm, emerges with
the LU algorithm, viz. load balancing. Inspection of Figures 10 to 12 show the problem; the
work in each row and column decreases as the algorithm proceeds, resulting in idle processors,
producing a lower bound on the efficiency of only approximately 33% [5, Section 5.8]. Hence the
topology required for an efficient LU algorithm must not only minimize the communication cost,
but also provide a solution to the load balancing problem. The solution to the latter is clearly
to interleave rows or columns in some fashion so that the work on each processor remains fairly
constant, but this is also clearly linked to the communication cost. Prior to van de Vorst's work,
most LU decomposition algorithms clustered the unknowns either by row or by column. However,

163



ao0 a 0 3 a06 aOl a-4 a 07 a 0 2 a 05 a,8

a30 a3 3 a 3 6 a 3 1 a3 4 a 3 7 a 3 2 a 3 5 a38

a60 a 6 3 a66 a 6 1 a 6 4 a 6 7 a 6 2 a65 a68

alO a13 a 16 all a 14 a 17 a 12 a 15 a 18

a 40 a 43 a 46 a 4 1 a 44 a 47 a 4 2 a 45 a 4 8

a7o a7 3 a7 6 a7l a 74 a77 a 72 a7 5 a78

a 20 a 23 a 26 a 2 1 a 24 a 27 a 22 a 25 a 28

a5 o a 53 a 56 a51 a 54 a 57 a5 2 a5 5 a58

aso a 83 a 8 6 a 8 1 a 8 4 a 87 a 8 2 a 85 a88

Figure 14: Scattered grid distribution; 3 by 3 processor array (mesh). The elements in the upper
left corner map onto processor 00 of Figure 2, those in the upper centre onto 01, those in the left
centre onto 10 etc.

a better method is to combine these. This double interleaved distribution is also used by Fox et
al. [7, Section 20-3] for the parallel LU decomposition of a banded LU matrix - the bandedness
of the matrix affects the timing analysis, but not the basic algorithm. Fox et al. use the term
"scattered square decomposition". It would appear that Fox has priority on the double interleaved
distribution, but his early work appeared as internal Caltech reports and van de Vorst's and Fox's
work appeared in the published literature at much the same time. Van de Vorst's earlier work
appears to have been carried out independently of Fox's [24], but Bisseling and van de Vorst later
acknowledge the similarity [201.

From the viewpoint of minimizing the communication count, van de Vorst [24] has shown that
a square mesh distribution is the optimal N1 x N2 grid topology. (Note that a row or column
distribution are extreme cases of this general case, in the former case with N1 = N, N 2 = 1, and
vice versa for the latter). This can be confirmed intuitively: with a column or row distribution,
the amount of data to be communicated at each step is O(M) - an entire column (or row)
must be communicated - whereas using the grid distribution the amount of data at each step is
O( M ). Furthermore, with the grid distribution, the column and row broadcast pipelines can be
run concurrently. This will be explained shortly.

With this grid decomposition required to minimize the communication cost, the load balanc-
ing problem may be solved very elegantly using a double-interleaved clustering scheme for data
distribution [24, 20], whereby both row and columns are scattered moduloVN- over a square array
of VN" by vWN transputers, with VW <« M. The distribution of a matrix of dimension 9 on a 3
by 3 array using this double interleaved distribution is shown in Figure 14 for the processor mesh
shown in Figure 2. The "wave-front" suggested by Figures 10 to 12 now sweeps cyclically through
the processor array, each cycle completing vW rows and columns. The algorithm terminates after
M/vl'- cycles. It may be seen by inspection that all the processors remain occupied until the
very last cycle of the algorithm. The load-balancing problem is thus alleviated.

In the case where M is not an integral multiple of VNx, special care is required; the work is
divided up as evenly as possible but the processors with one less row and column to work on must
be thus explicitly programmed. The method used in the CG code of padding the matrix with
rows and columns )f zeros is not applicable in this case, since the LU algorithm fails when a zero
is encountered on the diagonal.

Formally, the double interleaved distribution is the Cartesian product G of sets Gi x HI:

G {Gx Hj :0 < i,j < vN} (15)
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with
Gi i{s: sV A s modli/V= i}V0 _< i < V (16)

Hj {t : t1V A t modvFN= j}VO < V < W (17)

and
V - {s:0< s < M} (18)

The indices i and j refer to processor indices and the indices s and t to matrix element indices. As
an example, for the 9 by 9 matrix distributed on the 3 by 3 processor mesh shown in illustrated in
Figures 2, V = {0,1,2...8}, and Go, G1 and G2 (and H0 , H1 and H2 ) are {0,3,6}, {1,4,7} and
{2, 5, 8} respectively. The Cartesian product Go x H0 gives the indices of the 9 elements clustered
on processoroo. The full distribution G is shown in Figure 14.

An upper bound on the load-balancing complexity can be established as follows. The maximum
load is carried by processor\ N- __ (the processor at the lower right of the processor array). As

already discussed, the scattered grid distribution results in a cyclic "sweep" through the processor
grid, with /NY Steps per cycle and M/v'-N cycles in total. The amount of work in the last cycle
- where there is only one element left to update - is approximately 2(vN") (the factor 2 comes
from the multiplication followed by subtraction, and the a/N from the number of Steps in the
cycle); on the preceding cycle 2(41KN); and so on back to the first cycle with 2[M/VWN]2VNT.
Summing over all M/VWN cycles yields an upper bound of

2 M 3  M 2

+3 - (19)

The first term is clearly the parallelized computations; thus the second term is the additional
computational overhead caused by the load-balancing term.

The communications use pipelined, concurrent, row and column broadcast. The pipelines are
implemented in software; the concept is to overlap the incoming and outgoing vector to further
exploit the parallel link operation possible on a transputer. An example is shown in Figure 15
for one of the communication primitives exploiting pipelining. The effect is to speed up the
communications by a factor of almost 2v/-N, where the factor of 2 derives from the concurrent row
and column operation and the VK from the pipelining. Details and more complete pseudo-code
may be found in [5, Section 5.10], and also in [4].

An upper bound for the communication count can be derived by considering the processor
column carrying the heaviest communication load, namely the right-most column. For the first
cycle, the amount of data to be communicated is approximately •N for each Step in the cycle.

For the next cycle, the amount of data is 7N - 1 per Step, and so on. Summing over all the

M/v/N cycles yields

tmesh :5It _ ) ] + [( _ - 1)V/K + ... + [(1)VfN]}tco.m (20)

There are J_ square-bracketed terms in total in the above equation (i.e. the number of cycles),
which can be re-written as

M
M 2  77

tmesh 7• - : kltComm (21)
k=0

and thus 1 M2

tmsh < -M- + O(M) (22)
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procedure broadcast-column..to.right (length)
begin

{initialize pipeline}
{note: length of vector passed as argument)
receive vector[l) from left processor
repeat for i = 2 to length

par{run pipeline}
receive vector[i] from left processor
send vector[i-l] to right processor

end{par}
end{repeat}
{flush pipeline}
send vector[length] to right processor

end{procedure broadcast _column.to.right}

Figure 15: Pseudo-code for rightwards pipelined column broadcast procedure. This runs in
parallel with similar leftwards column broadcast and upwards and downwards row broadcast
procedures.

Bisseling and van de Vorst's result [20, equation (3.19)] has an identical dependence on M2

once the necessary change of notation is made.

A theoretical model for the efficiency may now be derived. The serial time, using a conversion
factor from complex to real flops of 4 as before, is (ýM 3 )tcaic; the parallel time is the sum of the
computation count, equation (19), and the communication count, equation (22). Summing the
last three, using equation (1) and simplifying yields

1= (23)
1+ n- 1(2 + 13P-(23

where n = M/l/K- is the grain of the problem, i.e. the number of unknowns per processor, and j3

has the previously defined meaning.
It is instructive to compare this result with that for the CG solver, re-written using the same

notation:
1I NO (24)

1 + n-IvfN(2.75 + 0.125d + 192 )(

Note that the terms in n- 1 in the denominator of the respective equations have similar constant
multipliers, but in addition the CG equation has a 1 and also a log 2 N term. Hence it can
be expected that for similar n that the LU algorithm is more efficient, a result that is confirmed
experimentally. This indicates that a parallel LU algorithm based on a mesh topology scales better
than a parallel CG based on a binary tree - the mesh and binary tree being considered as the
"natural" topologies for the CG and LU algorithms respectively, for the reasons already discussed
in this paper. To summarize: the CG algorithm scales with the reciprocal of the number of
rows per processor, whereas the LU algorithm scales with the reciprocal of the square root of
the number of unknowns per processor, and the latter is the smaller multiplier. This is a most
interesting result, considering how initially unsuitable for parallelism the LU algorithm appeared,

and is confirmed by the results in Section 3.6.
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process[s]
begin

z[s] := b[s]; k = 0 {initialize}
while k < n do

begin
if k < s then

receive z[k] from process [k]
z[s] := z[s) - Lis,k] z[k]

else if k = s then
zs[] := z[s) / L[s,s]
send z[s] to all processes q with q > k

else if k > s then
SKIP

k := k+1
end

end. { process[es] }

Figure 16: Forward substitution pseudo-code; solve [L][z]=[b].

3.5 Parallel Forward and Backward Substitution

Following the factorization of [A] into the product of [L] and [U], the unknown left hand side is
solved for using the two-step forward and backward substitution processes already discussed. A
parallel version of the forward and backward substitution algorithms is also necessary, not because
of the computation time, which is O(M 2 ), but because it is most undesirable to communicate all
the elements of the [L] and [U] matrices back to a master processor, since the master must
then have enough memory to store the entire matrix and the communication procedure takes
time. The former is the more serious problem for a typical MIMD array with local memory;
sufficient memory is not available on any one node (processor plus memory) to store the entire
matrix. Suitable parallel substitution algorithms have been derived by the author; pseudo-code
for forward substitution is given in Figure 16. The modifications for backward substitution are
simple; the algorithm may be found in [5, Chapter 6]. Subsequent to publication of the author's
own research [25], van de Vorst and Bisseling published an algorithm for parallel forward and
backward substitution.

The substitution algorithms operate on only one column of the processing array at a time,
and the latest version of the relevant vector ([z] or [x]) is passed from column to column as the
algorithm proceeds. Thib is far from the most efficient parallel substitution algorithm possible,
since only vW processors are active concurrently, but has the major advantage of using the same
scattered grid distribution as the parallel LU algorithm.

3.6 Timing Results

The parallel LU and substitution algorithms described in this section have been implemented by
the author in Occam 2 for a transputer array. Detail of the implementation are discussed in [5,
Section 5.11]. Preliminary results were presented as [25]. Figure 17 shows efficiencies for a number
of different processor array sizes as a function of matrix dimension. The timing results are for
single precision runs. The matrix was generated using a simple thin-wire moment method scheme
using sinusoidal basis functions and collocation, using results from [26, Section 7.5] for the field
radiated by a sinusoidal current. This moment method code was also written in Occam 2. The
largest problem solved had 1500 unknowns, and used 25 transputers. The LU solver took about
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15 minutes to run, which corresponds to a computation speed of 9.6 MFLOP/s, and an efficiency
of close on 90%. The matrix was also generated in parallel and the efficiency of the entire code
is very similar to that of the LU part, which is of course the most computationally expensive
part. The forward and backward substitution algorithms have also been implemented and despite
having rather poor efficiency (as expected), the overall impact on the code is negligible due to the
O(M 2 ) computational cost of the substitution algorithm.

Figure 18 shows theoretical predictions, which can be seen to be somewhat optimistic, although
the general trend is correctly predicted. Reasons similar to those given in Section 2.4 may be
advanced for the differences; note that rather finer grain of communication in the LU algorithm is
more difficult to model accurately than the communication in the CG algorithm. Recent work by
the author indicated that the pipelines have a subtle problem in that the effect of the set-up time
- the time to initiate a communication on a link - is not negligible when elements are being
communicated individually; it is around 6.5jis, approximately equal to tcomm in single precision.
The effect of this is to double 3 in this case, and this has been incorporated in Figure 18; however,
the theoretical results are still some way off the measured results. To permit comparison of the
parallel LU and CG algorithms, measurements for a parallel CG algorithm are also shown in
Figure 18 for 14 transputers. (The binary tree and mesh topologies cannot use exactly the same
number of processors; a tree of 14 and a mesh of 16 is a fair comparison). The CG results were
measured with a single precision version of PARNEC. (Note that the results shown previously for
the CG solver are for the double precision version of PARNEC.)

Bisseling and Van de Vorst show similar measured results in [20]; the numerical values for
efficiency shown in Figure 17 are not directly comparable with their results, which are presumably
for real valued matrices, although the latter is not explicitly stated in their paper. The form of
the curves is very similar.

4 Scalar efficiencies of the LU and CG algorithms

Scalar efficiency 9 deals with the actual run-times of the algorithms when run on the same com-
puter - since the efficiencies of the algorithms discussed in this paper are comparable, it is also
very important for these parallel algorithms. It has generally been assumed that using an iterative
solver reduces the amount of computation from O(M 3 ) for the LU solver to nitrO(M2 ) for the CG
solver, where niter is the number of iterations required for convergence. The motivation for using
parallel iterative solvers for full matrix problems was the expectation that the convergence would
be sufficiently rapid for the CG algorithm to terminate in a small number iterations, making the
run-time considerably less than the corresponding LU factorization. Iterative methods are widely
and successfully used in methods resulting in sparse matrices such as the Finite Element method
[27, Chapter 10].

Unfortunately, for arbitrary moment method problems, the number of iterations appears to
be a quite substantial fraction of the number of segments, for structures discretized according to
some nominal segment length rule, for example A/10. For problems that are over-discretized, the
number of iterations appears to be a function of the problem, and increases only weakly with the
discretization, once the structure is satisfactorily discretized. See for example [18]. The reason
for this is probably that the extra eigenvalues introduced by the over-discretization are not very
significant; see [28]. Unfortunately, it is problems that are just satisfactorily discretized that are
frequently of the greatest interest to electromagnetic modellers.

Hence, for the important case of structures just satisfactorily discretized, the computational

9The term was suggested by a reviewer, and describes the issue very succinctly.
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dependence of the CG algorithm would also appear to be essentially O(M 3 ). Since the efficiencies
of both parallel methods axe comparable, the serial break-even point can be used, namely where the
number of iterations is 1/6 of the matrix dimension. However, even in the largest case investigated
to date by the author, using about 2 000 segments, this fraction was closer to 1/4, and was even
larger for smaller problems; see Table 7. Peterson and Mittra reported similar results several years
ago, for smaller systems with at most a few hundred unknowns [29]. The present author used a
normalized error criterion of 10-2, giving an error of around 1%. So, unless one is satisfied with a
larger error, the LU method would have been slightly, to considerably, faster for all the problems
investigated. The rate of convergence is highly dependent on the problem; for some other work
recently performed on relatively large systems (1 000 to 2 000 unknowns), the rate of convergence
was much poorer than that. mentioned above.

With a multiple right-hand side problem, such as a typical radar cross section problem, the
superiority of the LU method has long been acknowledged. The work of Smith et al. [30] on
using the CG method to solve multiple right-hand sides, by re-using some of the data generated
for previous right-hand sides, showed that although significant time savings compared to the
standard CG method were possible, for many right-hand sides the LU method remained the
better approach. However, a new technique recently proposed by Kastner and Herscovici [31]
shows promising results for a multiple right-hand side CG formulation.

5 Parallelizing the matrix fill

A number of researchers have reported that the time required for matrix fill, although an O(M 2 )
operation, can still dominate moment method codes for large numbers of unknowns [11]. Certainly
with a patch code, especially if using the Galerkin formulation, this could be a serious problem.
With thin-wire collocation codes such as NEC2, the matrix solve fairly rapidly dominates the
matrix fill; an example is shown in Table 7. This is for a CG solver; the number of iterations
is also listed. The "break-even" number of iterations where the CG run-time equals that of LU
decomposition is M/6. Using the NEC2 formulation and the CG solver row-block decomposition,
the problem of parallel matrix generation was easily solved - one simply decomposes by match
point, in precisely the same fashion that the NEC2 out-of-core solver functions. Work is at present
in progress on incorporating the LU solver into the parallel NEC2 code.

6 Conclusions

6.1 General

This paper has presented parallel algorithms for the two algorithms most frequently used in com-
putational electromagnetics for the solution of systems of linear equations. The basic algorithms
have been reviewed; parallel algorithms have been presented - both informally and formally in
pseudo-code, analyzed, and results obtained with an implementation of the algorithms on a spe-
cific parallel computer reported. The experimental results for the CG and LU solvers have been
compared both to the theoretical predictions and with each other for similar numbers of proces-
sors, demonstrating both theoretically and practically that the parallel LU algorithm presented is
more efficient than the parallel CG algorithm shown. The scalar efficiency of the LU algorithm is
also better since the run-time of the CG method is highly dependent on the rate of convergence
of the CG algorithm, and it has been found that the rate of convergence of the CG 1lgorithm for
practical problems is not sufficient for the CG algorithm to out-perform the LU algorithm.
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Number of tsolie/t fill Number of
segments M iterations

50 1.0 14
124 2.2 75
188 2.7 134
316 2.4 131
428 7.2 372
876 9.1 405
1196 10.4 409
1516 11.9 414
1996 21.1 543

Table 7: Ratio of the matrix fill to solve times for a particular simulation, viz. a cone-cylinder
with four monopoles [5, Section 6.7]. 30 worker transputers were used. All data except for the
last entry are for double precision: the 1996 segment data was generated using single precision.

6.2 Scaling behaviour and grain size

A very important result has been demonstrated, both theoretically and experimentally, namely the
scaling properties of the algorithms; larger problems can be solved in an approximately constant
time by increasing the number of processors. The scaling property of the parallel LU algorithm
considered in this paper has been shown to better than that of the parallel CG algorithm discussed,
although both have quite satisfactory scaling properties. It might be thought that it is self-evident
that as the grain size (the number of unknowns per processor, n2 as used in this paper), increases,
so the efficiency will increase - however, this is only a property of an algorithm where the
computation cost as a function of the grain size increases faster than the communication cost, and
is by no means a general property of all parallel algorithms.

The dependence of the efficiency on the grain has some implications for massively parallel
systems that should be considered explicitly. If 50% efficiency is considered acceptable, then
a grain size of several hundred is required for acceptable efficiency for the LU algorithm; or
put slightly differently, a sub-matrix per processor of dimension twenty or so. An important
theoretical result in this paper is that for a given efficiency, this grain size remains constant for
the LU algorithm and is only weakly dependent on the number of processors for the CG algorithm
(the dependence is approximately v/N); actual timing results confirm this (Figure 7). Note that
since the efficiency is a function of the 3, the communication to computation ratio, this break-even
point will also be a function of this ratio. For the transputer technology used, this ratio produced
very acceptable efficiencies on problems of practical interest: it is, of course, a function of the
processor technology, and the user must accept it as a given for a particular processor. For arrays
with hundreds of processors, where the algorithms remain relatively coarse-grained, the results in
this paper can be extrapolated to show that what are really the classic serial algorithms (albeit
in parallel form) can still give very acceptable efficiencies. It should be stated, however, that
these results may not apply to truly massively parallel systems, with perhaps tens or hundreds
of thousands of processors. The fundamental philosophical issue is that of global interaction (viz.
integral equation methods) versus local interaction (viz. differential equation methods) and it is
likely that the latter methods with their highly local interaction requirements may be far better
candidates for massively parallel computers.
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6.3 Workstations or transputers?

This section compares T800 based arrays with workstations available at the time of writing (1992)
and will inevitably date. As was clearly indicated in the Introduction, the aim of this paper was

not to blindly promote transputer arrays; a sober analysis of competing computer technologies

is necessary. The present transputer technology (the T800) dates to around the mid-nineteen
eighties, and at the time of writing, a contemporary high performance RISC workstation would
probably be a better investment; the maximum through-put of a 64 transputer array is about 33

MFLOP/s (in single precision, with a 100% efficiency of the parallel algorithm) as soon as one
uses the off-chip RAM, as is typically the case. The author has only been able to use about half

this array (25 processors), and obtained 9.6 MFLOP/s. The author has benchmarked the HP720

RISC workstation at close to 20 MFLOP/s on LU decomposition (also in single precision).

Note that this is in not a very fair comparison, since it involves the comparison of computing
technologies separated by five to six years; the balance will change back dramatically in favour
of transputer arrays when the T9000 is shipped from Ininos [4, 11], so the time invested in

developing the parallel algorithms described here is time well invested for future arrays; as serial

processors (and "he related processors such as super-scalar architectures) increase in speed, so
do the individual elements of processor arrays. Cwik and Patterson have reported the accurate

solution of what can only be described as massive moment method problems with 30 000 unkrowns
on a 512 node i860 array [32].

6.4 Issues still to be addressed

An issue that has not been addressed in this paper is the stability and accuracy of electromag-
netically large problems discretized using the moment method. The stability of the LU method,
applied to computational electromagnetic problems, has been studied by the author using a thin-
wire problem and results obtained indicate that in all except the most exceptional circumstances,

involving serious violation of the basic "thin-wire" assumption, the solutions obtained using the
LU solver are stable. The availability of a parallel version of NEC2 has permitted the investigation
of the accuracy of the moment method for large problems. This was done by using a physically

symmetrical problem; first solved with, and then without, exploiting the symmetry. Using sym-
metry reduces the number of unknowns by the degree of symmetry, thus requiring the solution of
a much smaller system of equations. This method has been used to demonstrate the accuracy of

NEC2 for problems with up to 2 000 unknowns [5, Chapter 6]. Some preliminary details are to
be published in [4].

The CG algorithm was the first major parallel code developed by the author and is not optimal
in a number of respects: if pipelining, as exploited in the LU algorithm, were to be exploited in the

CG algorithm for the broadcast and gather operations, improvements should be anticipated -
this has not been implemented, however. Further, the unparallelized vector operations (addition,
subtraction etc.), responsible for the 2.75 factor, could probably also be reduced by parallelizing
the vector operations. These amount to "fine-tuning" the existing binary tree algorithm. (One
should also bear in mind that given a processor with four communication links, a ternary tree
would be more efficient than a binary tree - as mentioned in [3]). However, in the light of the

predicted and measured performance of the parallel LU algorithm, an interesting question that
arises is whether implementing the parallel CG algorithm on a mesh would result in communication

p)erformance similar to that of the parallel LU algorithm. This is a topic for future research. At
present, the whole question is possibly more of academic than practical interest, since the existing
parallel CG code, while admittedly not optimal, is still very efficient for the problems of interest

on presently available arrays. However, rather larger MIMD arrays involving possibly thousands
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of processors may require parallel CG algorithms with better scaling properties.

6.5 General Conclusions

While the use of more powerful computers with existing algorithms is still ultimately limited by
the third power law (see Section 4), for many problems a relatively modest increase in problem size
closes the gap between moment method analyses and asymptotic analyses such as the Geometric
Theory of Diffraction. The importance of the algorithms discussed in this paper is the good scaling
properties that permit the efficient exploitation of large - but possibly not massive - processor
arrays for large problems.
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'A Priori' Knowledge, Non-Orthogonal Basis Functions,
and III-Conditionned Matrices in Numerical Methods

Ch.Hafner, Swiss Federal Institute of Technology, Zurich

Abstract

Many terms and ideas used in numerical methods have their origin in analytical mathe-
matics. Despite the well-known discrepancies between number spaces of computers and
those of good old mathematics, the consequences of applying mathematical theorems to
numerical methods and the importance of physical reasoning are often underestimated.
The objective of this paper is to demonstrate that introducing 'a priori' knowledge of a
problem into a numerical code can lead to superior numerical techniques but it may violate
analytic dogmas at the same time.

Introduction

It was essential for Isaac Newton to benefit from introducing the infinitesimal calculus
into physics. Although Newton himself developed concepts of matter close to post-modern
fractals, the infinitesimal calculus forced people to consider space, time, and functions
of space and time to be continuous. "Real numbers" that were believed to represent
chaos (Johannes Kepler) replaced integers and Euclids geometry. Maxwell theory was the
culmination of the idea of continua: Space, time, field, everything was considered to be
continuous and extending to infinity. Thus, Maxwell's theory was much more consistent
than Newton's theory in which the mass points did not really fit the idea of continuity.
Although this convinced Einstein to develop even more powerful field theories, problems
soon arose. Integers struck back. This was the beginning of quantum mechanics with its
strange finite number spaces and probability concept. Ironically, the computer is unable
to directly understand Maxwell theory, the most important theory of electromagnetics
that still is essential for the construction of today's computers. Real numbers, infinity,
continuity, and random numbers are far away from computer architecture. Thus, one
cannot exactly apply most of the well-known theorems in classical mathematics to develop
algorithms fur computers. Such theorems can even be misleading.

The first mystery in computational mathematics is the following. Aaalylically one
usually works in function spaces with an infinite number of dimensions. The number of
dimensions is often uncountable. For computers, this number must be finite and preferably
relatively small. I.e., one has to omit an infinite number -f dimensions. Nonetheless, one
can obtain useful results. For example, the number of basis functions or the dimension
of the function space of a Fourier integral is uncountable infinite, whereas the number of
basis functions of Fourier series is countable infinite. Obviously, Fourier integrals cannot be
evaluated numerically, except when the function behaves well, i.e., is sufficiently simple.
At first glance, it seems that nature is so kind with us, that we often can use Fourier
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integrals. But in fact, we usually simplify our models of nature to such an extent that
our methods work. For example, we know that absolutely flat surfaces do not exist in real
world, but we work with such surfaces in most of the numerical models. Again, nature is
really kind: We obtain useful results.

If we consider the approximation of continuous functions, flat surfaces, etc. by comput-
ers, we find another mystery. The approximations of real numbers, continuous functions,
surfaces, etc. made by computers are rough rather than continuous or flat. The situation
can be illustrated by Newton's mirror. To obtain a mirror, Newton polished metal. He
knew that the surface initially is rough. Thus, the rays of light are reflected in very dif-
ferent directions. He did recognize that polishing made the surface less rough but never
eliminated the roughness completely. Thus, the rays of light should always be reflected
in very different directions and one should never obtain a mirror. Newton did introduce
the concept of a kind of fluid on the surface of the metal. The rays are reflected by this
fluid rather than by the surface of the metal. This explained why there are mirrors. Since
Maxwell, we "know" that this is the effect of the wavelength. However, the computer
approximates flat surfaces in the analytic model by rough surfaces. Although this is an
essential discrepancy, we get useful results.

Of course, we cannot do whatever we want for obtaining useful results. Provided that
we are not pure mathematicians, the results we are looking for have a certain meaning
and usually are compared with measurements. If we consider the huge difference between
measurement, analytical model, and numerical computation, the fact that we can get
useful results again is a miracle. However, it is very important to note that we often
introduce some 'a priori' knowledge in order to obtain useful results. This can be done
to discard wrong results like spurious modes but also in the modelling and in the design
of codes. For example, all adaptive methods use a certain kind of 'a priori' knowledge,
i.e., the data obtained from previous computations. Since it is such a big miracle that we
are able to simulate measurements by computations, the 'a priori' knowledge is extremely
important. It can even be used for entirely removing the theory, e.g., Maxwell theory, from
the code. This is obviously true for heuristic codes, but one can also try to implement
codes that directly analyze measurements, find a theory, simulate, and predict measured
data. However, the power of 'a priori' knowledge should not be underestimated. Numerical
codes that ignore 'a priori' knowledge (some mathematicians might like such codes) turn
out to be inefficient in most cases. As people should be able to learn from each other
or from previous generations, a numerical code should at least take advantage of some a
priori knowledge of its designer or of its user.

In many series expansions, for example, Fourier series, the basis functions are ordered.
This is important for counting the basis functions and above all for defining the conver-
gence. It is well known that convergence is important for the efficiency of a numerical
method, but the analytic proof of convergence for any series expansion is not sufficient
in practice. Instead, we need a sufficiently fast convergence. On the other hand, one
can also obtain useful numerical techniques with asymptotic and other series that do not
converge at all. When 'a priori' knowledge is considercd, one often can eliminate some of
the basis functions in ordered series. For example, symmetries often lead to such reduced
sets of basis functions. But one can even obtain completely different, somewhat "chaotic"
series expansions. For such expansions, the term "convergence" sometimes cannot even be
defined. Nonetheless, they can be very powerful.
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The basis functions of many series expansions are orthogonal. The orthogonality
considerably simplifies the computation of the coefficients of such series. Thus, destroying
the orthogonality seems to be a sacrilege. It is important to note that orthogonality
always depends on the definition of a scalar product. In computational electromagnetics,
the definition of the scalar product depends on the modelling and can be different from the
scalar product with respect to that the basis functions are orthogonal. Although the basis
functions are orthogonal in a certain sense, they are often non-orthogonal with respect
to the scalar product that actually is used*. Orthogonalization procedures are very time
consuming. Therefore it is not reasonable to use them. Numerically, working with non-
orthogonal functions is quite simple, provided that the functions are not almost linearly
dependent. One usually obtains matrix equations that can be solved with many well-known
algorithms. Again, analytic mathematics created the term of linear dependence. However,
the requirement of linearly independent basis functions in a numerical code is not enough
in general. It is quite cumbersome to detect "almost dependent" basis functions. A well-
known measure is the condition number of the matrix. A large condition number means
that the matrix is ill conditioned, whereas the "optimal" condition number (which is one)
can be obtained when orthogonal basis functions are involved. It will be demonstrated in
the following sections that one can obtain more accurate results by increasing the condition
number. There are two "optimal" condition numbers: one that only considers the matrix
and another that considers the results. The latter can be considerably bigger than the
former. Thus, improving the condition of a matrix or using even orthogonal functions may
have undesired effects.

Intelligent Fourier Analysis

Fourier integrals usually are applied to time-dependent functions defined in the interval
-oo < t < oo. It is considered to be true that the "real" time of our universe has finite
upper and lower limits. Every measurement has even much more restrictive upper and
lower limits. In such a finite time interval, Fourier integrals can be replaced by the much
more simple Fourier series. In fact, the harmonic functions used as basis functions in the
Fourier integrals are orthogonal provided that an appropriate scalar product is defined on
the interval -oo < t < oo. On a finite interval, no scalar product can be defined in such
a way that all basis functions used in the Fourier integral are orthogonal, whereas it is
no problem to find a scalar product that makes the basis functions of the Fourier series

* For example, the functions r' cos np and r" sin np, where rV are polar coordi-

nates and n is an integer number, are orthogonal if the scalar product is defined as
oo 2w

(f,g) = f f fgrdrdo. The functions r' cosnV and rn sinnW can be used for solving
r=O W=O

the Dirichlet problem in a bounded 2D domain D. Depending on the numerical method,
a scalar product is applied that is defined either on the domain D or on its boundary OD.
For example, (f,g) f fgds. With respect to such a scalar product, the functions are

8D

non-orthogonal, except when aD has a very special shape.

178



orthogonal*. Obviously, the basis of Fourier series is obtained from the basis of Fourier
integrals by erasing most of the basis functions, i.e., the biggest part of the spectrum in
such a way that a discrete spectrum is obtained. Thus, one has the same effect as when
one takes very high symmetries (symmetry groups with an infinite dimension) into account
for any series expansion.

It is obvious that the numerical computation of Fourier series is much simpler than the
one of Fourier integrals. There seems to be no reason for Fourier integrals since neither
"real" time nor the time intervals of measurements are infinite. But if one considers
the spectra of practical functions, one often finds a behavior that can much better be
approximated by Fourier integrals (with a practically limited spectral domain). Thus, the
approximation of functions in a finite time interval by functions defined on an infinite time
interval often is reasonable.

Let us now assume that a function f is defined in the interval -oo < t < oo and f
can be expanded by a Fourier integral with a finite spectrum. If this function is measured
in a time interval 0 < t < T, it can be expanded by a Fourier series. If we assume that
the measured function f0 is known exactly in every point of the interval, the spectrum of
the Fourier series turns out to be discrete and infinite, i.e., the spectra of f and f 0 turn
out to be completely different. If we compute the Fourier series of f0 outside the interval
0 < t < T, we find that this is a periodic function with the period T. Thus, the "true"
function f and the expansion of the measured function f 0 are completely different outside
the interval 0 < t < T even in the best case, where the measurement of f 0 is exact in
the entire interval. As a consequence, the Fourier series cannot be used to predict the
behavior of f for t > T even when t is not much bigger than T, as the following discussion
illustrates.

For reasons of simplicity, we now assume that f simply consists of two harmonic
functions, for example,

f = A cos WAt + B cos WBt.

(See figure 1.) Note that f is not periodic at all when WA/WB is irrational. If we measure
f in a finite number of points kAt, k = 1,2, ... K, we easily can approximate it by a Fourier
series. Usually, we will not be so lucky that both frequencies WA and WE are in the discrete
spectrum of the Fourier series. Nonetheless, from a pure mathematical point of view,
everything is fine: 1) The basis functions of the Fourier series are orthogonal with respect
to an appropriate scalar product defined on the interval 0 < t < T. 2) The condition
number of the corresponding matrix is one. 3) The system of equations can be solved
with any algorithm. 4) Iterative matrix solvers converge in only one step, and so on. But
there are two important drawbacks: 1) The convergence is quite bad in most cases. 2)
The prediction of f outside the interval of the measurement is completely useless. Figure
2 imlustrates this.

* This is quite clear because the number of indeFendent basis functions is infinite but

countable - otherwise, the set of basis functions of the Fourier series would be incomplete.
Since the number of basis functions of a Fourier integral is incountably infinite, there must
be incountably many dependent functions, and dependent functions never arc orthogonal.
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Figure 1 Function f(t) = cos(18wrt)+0.4cos(28wrt). Top: in the interval t = 0...2 used for sam-
pling and expanding it. Bottom: In the time interval t 0 ...20 used for computing
the error function.

Figure 2 Error obtained when a Fourier series is applied to approximate f(t) = cos(181rt) +
0.4 cos(287rt). Note that the condition number of the matrix is one.

If we want to apply Fourier integrals with a finite spectrum to approximate the same
function measured in the same points, we recognize that we do not know how to choose
the limits of the spectrum. Moreover, the spectral domain needs to be discretized for
numerical integration. Finally, the basis functions are no longer orthogonal on the interval
0 < t < T. Here, some 'a priori' knowledge, for example, an estimation of the limits of the
spectrum, can be very helpful.

When we do not have any 'a priori' knowledge or when we are too lazy to care about
it, the computer can try to get it from analyzing f 0 . An idea how this can be achieved
is the following: 1) Assume that f0 can be approximated by a single harmonic function
and compute its amplitude, frequency w1 , and phase. The computation of the frequency
requires a nonlinear optimization. Moreover, a least squares procedure (best fit) is rea-
sonable here. 2) Since the frequency estimated in the previous step probably is inaccurate
(this is often typical for 'a priori' knowledge), use now several frequencies w1 i which are
close to wl. The differences w1i - w, depend on the accuracy of the estimation of w1 . The
estimation of this accuracy is another problem that is not considered here. 3) Approximate
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f 0 by the series

f= Ali cosw1 i-t + Bli sin w1it.

Note that the basis functions in this expansion are almost linearly dependent and that
the condition number of the matrix to be solved turns out to be very bad when the
differences w1 i - w1 are very small. Obviously, the better w, is estimated, the worse
the situation becomes, i.e., the more accurate the 'a priori' knowledge, the worse the
condition of the matrix. Thus, it is extremely important that the method for computing the
unknowns does not fail when the condition is bad. Here, it is strongly recommended to use
Generalized (weighted) point matching [1,2] with an overdetermined system of equations
that is directely solved with QR decomposition or even singular value decomposition. 4)
Compute the error function e = f" - fl and analyze e as you did analyze f', i.e., estimate
the frequency w2 , add a set of basis functions cos w2 it, sin w2 it, compute the parameters
in the series expansion. Of course, this procedure can be repeated. Since we only have
two harmonics in our original function f, this is not necessary here. The figures 3 and 4
illustrate this for 3, 5, and 7 basis functions per frequency. Note that one can not only
analyze the function and errors in the time domain but also the spectrum in the frequency
domain. From the latter one often can obtain more accurate estimations of the frequencies
which directly leads to an iterative improvement of the results. The biggest advantage of
this procedure is the fact that one can predict f outside the interval where it has been
measured. Moreover, the number of basis functions required can considerably be reduced
and the accuracy of the approximation in the interval 0 < t < T is much better than
for the Fourier series. Concerning the condition of the matrices, the following behavior is
important: when the number of basis functions wk:i per estimated frequency wk is increased
for a fixed maximal difference Iwki - w: 1, the condition number is increased but the results
obtained are at first improved. The point where the results become worse depends on the
problem but also on the numerical method used for computing the parameters in the series
expansion. At this point the condition can be very bad, when a good numerical technique
is applied. Maybe, the badness of the condition is even a measure for the quality of the
method.

Note that the function f(t) = cos(lSwt)-+0.4 cos(28wrt) used for testing the "intelligent"
procedure is periodic because 18/28 is rational. Thus, one can apply a Fourier series. This
is very sucessful when one knows the actual length of the period T.. Since T. is much
larger than the interval T where the function is measured, the basis functions of the Fourier
series are non-orthogonal with respect to a scalar product defined on the interval t = 0...T
and the matrix turns out to be ill-conditioned. Of course, the knowledge of T. is an 'a
priori' knowledge as well.

Computational Electromagnetics with the MMP Code

Computational electromagnetics is a considerably more complex task than the approxima-
tion of functions by a series expansion with a given set of basis functions. But essentially
most of the codes for computational electromagnetics use either explicitely or implicitly a
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Figure 3 Error obtained when the "intelligent" procedure is applied to approxima- j(t) W
cos(18irt) + 0.4 cos(287rt). Top: Two times three non-orthogonal basis functions. The
condition number of the matrix is 425. Middle: Two times five non-orthogonal basis
functions. The condition number of the matrix is 9.7E6. Bottom: Two times seven
non-orthogonal basis functions. The condition number of the matrix is 1.0E8. All
computations with single precision.

similar expansion of the electromagnetic field. Thus, one can find similar effects as shown
in the previous section.

The MMP code [3,4] is very closely related to analytic solutions of the Maxwell equa-
tions. In each domain, the field F is approximated by

F = F0 + n = E AFi + 71

where ,7 is an unknown error function, Ai are the unknown parameters to be computed, and
Fi are known solutions of Maxwell equations in the corresponding domain, playing the role
of basis functions. Obviously, the approximated field F' automatically fulfills Maxwells
equations in the corresponding domain and the parameters Ai have to be computed in
such a way that the boundary or continuity conditions are fulfilled numerically. In the
MMP code, multipole fields are preferred basis functions Fi but many other functions are
available as well. It is well known that the quality of the results depends not only on the
basis functions but also on the technique used for computing the parameters.

It is very clear that simple techniques can be applied when the basis functions are
orthogonal. Actually, multipole functions are orthogonal when a scalar product is defined
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Fiqure 4 Spectrum obtained when the "intelligent" procedure is applied to approximate f(t) =
cos(187rt) + 0.4 cos(281rt). Top: Two times three non-orthogonal basis functions.
Middle: Two times five non-orthogonal basis functions. Bottom: Two times seven
non-orthogonal basis functions. Note that the large amplitudes in the last spectrum
indicate that there are severe cancellations in this computation.

everywhere in space. But this not relevant for the numerical computation of the parameters
since the boundary conditions do not hold everywhere in space. When a scalar product is
defined on the boundaries of the domains, the multipole functions are no longer orthogonal
- except for very special and simple cases. Thus, one has to deal with non-orthogonal basis
functions anyway. Unfortunately, Simple MultiPole (SMP) expansions that have success-
fully been used for relatively simple geometries [5] do not converge rapidly in most cases
and are useless for more complex geometries. To overcome this drawback, Multiple Mul-
tiPole (MMP) expansions have been proposed [6] wherby most of the scientists discarded
the SMP approach in favor of the Method of Moments (MoM) [7].

In older codes based on SMP expansions the parameters have been computed using
Simple Point Matching SPM on the boundaries. It is very imortant to recognize that
SPM is a relatively weak method that does not work unless the matching points are
selected appropriately. There seems to be a relatively strict relation between the basis
functions and the appropriate locations of the matching points If SMP expansions are
replaced by MMP expansions, it is extremely hard to find appropriate locations for both
the multipoles and the matching points. This is a reason for abandoning not only SMP
but also SPM and replacing it by defining a scalar product and performing a projection
on a certain set of testing functions. People working with MoM have noticed that there is
some relation between the numerical computation of the scalar products and the matching
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points [2]. When one uses more points to compute the integrals in the scalar products
than the number of unknown parameters, one obtains an equivalence with the weighted
point matching technique. This technique is essentially the same as the Generalized Point
Matching (GPM) that has already been used in the early versions of the MMP code [8] for
removing the problems of SPM with MMP expansions. In GPM the numerical equivalence
mentioned above has been used for deriving an appropriate geometrical weighting of the
equations. In addition, a physical and a user defined weighting is implemented in the
MMP code, and continuity equations for all components of the electric and magnetic field
are usually imposed.

Although GPM is numerically equivalent to a projection method with trapezoidal
numerical integrations and Galerkin's choice of testing functions [1], it is very important
to note that the overdetermined system of equations AP = G obtained from GPM is solved
directly in the MMP code using a Givens updating based on QR decomposition, whereas
the projection method usually applied in MoM codes leads to the square system A*AP =
A*G. Solving AP = G directly is numerically superior to solving A*AP = A*G. In fact,
the latter is useless when the condition of the matrix A is not sufficient. Mathematicians
might believe that this is no drawback because ill-conditioned matrices should be avoided
anyway. But we did already see in the previous section that one can obtain numerically
more accurate results with "worse" matrices with larger condition numbers. Exactly the
same effect can be shown using the MMP code.

Actually, the computation of the condition number of a matrix is quite cumbersome.
Some algorithms like Cholesky decomposition [9] allow to estimate it but this estimation is
very inaccurate and it is always too high. Singular value decomposition can be performed
to compute the condition number accurately. This requires the storage of relatively large
matrices and is quite time consuming. For these reasons, singular value decomposition is
not implemented in the usual version of the MMP code, but it is contained in a testing
version of the 2D MMP code. In addition to the singular value decomposition, the columns
of the matrix A must be scaled. The column scaling does not affect the results in most ca-es
- in some cases it even leads to slightly worse results because of the additional numerical
operations - but it is important for iterative matrix solvers and for the condition number.
For example, when the scattering of a plane wave from a circular cylinder is computed
with the MMP code, the basis functions are orthogonal and the condition number is one
if the columns of the matrix are scaled. Otherwise, a typical condition number is 10000
and depends on the frequency and size of the cylinder.

For demonstrating that the accuracy can be improved when ill-conditioned matrices
are used, a 2D counterpart of the famous 3D ACES cylinder [10] has been considered with
a vertically incident plane wave. A cylinder with a height of one wavelength and a width
of 0.4 wavelengths (see figure 5) has been computed with 2D MMP. The matrix to be
solved had 82 rows and 45 columns. I.e., the system was slightly overdetermined. On the
long symmetry axis of the cylinder, M multipoles were set with equal distances between
their origins, according to the MMP rules discussed in [1]. When an SMP expansion, i.e.,
only one multipole, was used, the result turned out to be completely wrong because of the
"wrong" locations of the matching points. But for more multipoles, useful results have
been obtained (see table). Note that the orders used for the different multipoles have been
varied in such a way that always 45 unknowns have been obtained. Of course, both the
condition number and the error depend on the distribution of the orders of the poles but
this problem is not considered here. In the computation of the example, the horizontal
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symmetry axis has been used for reducing the computation time. One multipole has always
been set in the center. Because of the symmetry operations one effectively has 2M - 1
multipoles when one sets M multipoles with one multipole on the axis. This explains why
only odd numbers are contained in the table below. The error number is computed by the
MMP code and contains the mismatching of all field components on the boundary. It is a
relatively reliable measure and usually turns out to be considerably higher than the error
estimated by other codes, for example, [11].

IN "a -A

"0" --6.

Vk - -_.

A V A -7 -i: w

"" 4 l /

a -, -. 6 .A

Figure 5 Scattering at a 2D "ACES-shape" cylinder used as an example to test the condition
numbers and the MMP errors for different MMP expansions. Time average of the
Poynting vector field and error distribution in the matching points for a total number
of 11 multipoles. The condition number 5.5E5 is already quite high but obviously
the results are very accurate. Computation with double precision.

Condition Number and Error in Function of Multipoles
for a 2D Conducting ACES-Shape Cylinder

Multipoles Condition Number MMP Error

3 2.6E2 5.4E-1
5 7.8E2 9.3E-3

7 1.3E4 5.2E-3
9 1.3E5 2.2E-3
11 5.5E5 2.9E-3
13 2.4E6 3.7E-3
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If one considers the table above, one will recognize that the optimal result is obtained
with 9 multipoles where the condition is already quite bad. Since the condition number
is considerably increased between 5 and 7 multipoles, a code that is not able to handle
ill-conditioned matrices might lead to optimal results when only 5 multipoles are used.
Since the example is very simple, the condition numbers remain moderate. For more
complex applications, very high condition numbers can be obtained. In this case, even
QR and singular value decomposition fail. But good results have been obtained with
block-iterative matrix solvers [12].

Note that 'a priori' knowledge is very important in the MMP code. 1) Some 'a priori'
knowledge is used in the modelling, where the user defines the matching points. The
GPM in the MMP code allows to set much higher matching point densities near critical
points, i.e., points where the user assumes 'a priori' that the field varies considerably. This
would not be possible or at least not to same extent with SPM. 2) The setting of the
multipoles can be done with 'a priori' knowledge. Many simple rules have been established
for this purpose and the graphic MMP editors contain semi-automatic procedures for the
pole setting. 3) When a rough model has already been computed, one can use a lot of
'a priori' knowledge for improving the model. In this case, the MMP code even allow to
introduce the field computed from a previous run (eventually with a different model) as
a new basis function called "connection" [13,1]. Connections can lead to excellent results
with ill-conditioned matrices.

Conclusion

It has been demonstrated that terms known from analytic considerations and goals like
orthogonal basis functions and small condition numbers of matrices can be misleading
and prevent engineers from designing useful codes for computational electromagnetics and
similar tasks. Introducing 'a priori' knowledge in numerical codes requires open structures
and often leads to ill-conditioned matrices. Thus, it is important to develop and apply
methods for handling such matrices, for example, the generalized point matching used in
the MMP code instead of the projection technique used in many MoM codes.

Mathematicians usually derive theorems and algorithms for certain classes of functions.
For them, all possible solutions are of the same interest. Engineers often look for very
special, physically meaningful soltions. Although algorithms able to approximate any
solution can naturally be used for approximating special solutions, they are inefficient
compared with more specialized or more intelligent algorithms. Similarly, mathematical
theorems can be useless for engineers. An engineer who wants to simulate, for example, the
scattered field for a certain geometry and for a given incident wave, has to find a relatively
small set of basis functions allowing to approximate the solution with the desired accuracy.
A mathematical proof of the completeness of a certain set of infinitely many basis functions
allowing to approximate, for example, all regular solutions for any incident wave and for
any geometry is neither necessary nor helpful. The important question "how many basis
functions are required to solve a given problem with the desired accuracy?" is never
answered by mathematicians. This big discrepancy between classical mathematics and
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engineering forces us to invent new, efficient, and intelligent codes that are not based on a
"solid" mathematical foundation.

Design of intelligent codes does not only mean to gather a lot of knowledge from books
and papers but also to violate analytic dogmas for testing whether they still hold in the
age of computers.
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ABSTRACT

The method of moments reduces to the boundary-residual method or the
point-matching method with a suitable weighting function. This paper shows
another means by which these three methods can produce equivalent
results. Arguments are given as to why point matching can fail to con-
verge, while the other two methods rigorously converge. An example is
given to support these arguments.

EQUIVALENCE OF METHODS

The method of moments [1], the boundary-residual method [2, 3], and
the point-matching method [4] are three seemingly different methods for
field computation. Harrington [1] has shown, however, how the method of
moments encompasses the other two methods through the proper selection of
weighting functions. Another means exists by which all three methods can
become computationally equivalent.

Consider the problem posed from the perspective of the method of
moments [1]. A deterministic equation such as

L a cifi(s) = g(s) (1)
i 1

is to be solved over some range s. The equation, as it applies to electro-
magnetics, may satisfy the boundary conditions of a particular problem,
e.g., the continuity of the tangential fields across the boundary. The
summation then represents the field within a region, and the operator L
produces the tangential fields at the boundary s. g(s) is the value of the
tangential fields from, say, the known incident field. A weighting func-
tion Wi can be multiplied on both sides of Eq. 1 and integrated over the
boundary s to produce a matrix equation:

= -1

M a = g (2)
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with

Mij = f Wi(s) L f.(s) ds (3)
S

,= f W.(s) g(s) ds (4)
s

The boundary-residual method can be derived from these equations by
setting the weighting functions equal to

Wi (s) = (L fi(s) (5)

where * denotes the conjugate operator. The truth of this assertion can be
shown by defining the residual along the boundary,

R(s) = L X a. f.(s) - g(s) (6)1 i
il

and minimizing the integral of the residual magnitude over the boundary in
the least-squares sense. The minimization is with respect to each of the
unknown coefficients a.:

1

f.~~ d - I.• *Tf~s
f R(s)1 = 0 a (L f L f. (s) ds

sa s 3ai i0 * s

-2Re • a* f (Lfi(s)J* g(s) ds + f g(s) g(s) ds
I s s

2. aj f (L fi(s)) L f.(s) ds

5s

2 f (L fi(s)J g(s) ds (7)

s

which implies Eq. 5. For point matching, the weighting function is a delta

function given by

W i(s) = 6(s - s.) (8)
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so that Eq. 3 becomes

M.ij f J 6(s - s.) L f.(s) ds

= L f.(s) (9)

where si is a sample point along the boundary.

Now consider the practical implementation of Eqs. 2-4. The integrals
are usually evaluated numerically so that Eqs. 3 and 4 become sums:

m
M.j= X qpWi(sp)L fjS) (10)
13 P= p jp

m

gi q p Wi(sp)g(s) (11)
p=l P

where q are the weights of a Gaussian quadrature integration m-thod [5].
m is t~e number of points of the integration method. Assume that the
number of functions fi in Eq. 1 ranges from 1 ... n. The matrix equation
to solve becomes

mm m m•i qpW[Sp)Lfl(Sp) "'" • qpW(sp)Lfn(Sp p 1 q p [ pgSp

SqpW(s )Lf(s ." qpWn(s)Lfn ( q W (s )g(Sp)
p= n p p pi p n pl np p

(12)

It can be verified through direct matrix multiplication that Eq. 12
is equivalent to

Qt pc* =t (13)
Q Pat= Q G (3

where t denotes the matrix transpose and
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Fq7 _1 1(s 1) 1* ~q, W"(s 1 )

Q (14)

rm W1 (Sm) " q* m Wn(sm)

•IT Lfl[l 1' (sI .. iq Lfn[Sl)

" (15)

fqmLf 1 (S) **..* m n~

G -(16)

FT g(sm)

The number of rows of the matrix Q is m, whereas the number of
columns is n. If m is set equal to n, then the matrices in Eq. 13 become
square; the problem then becomes equivalent to

= 4 +

P a = G (17)

This equation is equivalent to the point-matching method applied to Eq. 1
in which the number of functions f1 equals the number of boundary-sampling
points. Because this solution no longer depends on the form of the weight-
ing function, it is also equivalent to the boundary residual solution.
Now, the boundary-residual method [2, 3] and the method of moments [1] are
rigorously convergent, whereas point matching has been shown to fail to
converge to the proper solution [6] in some cases. The discrepancy lies in
the discretization inherent in the numerical integration routine used to
compute Eqs. 3 and 4. By using too few integration points, to where the
number of integration sample points (m) equals the number of fitting func-
tions (n), the method of moments degrades to point matching. This conclu-
sion was also reached by Djordjevic and Sarkar [15] although they do not
discuss the failure of point matching as in the next two sections.
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THE FAILURE OF POINT MATCHING WITH FUNCTIONS
OF UNBOUNDED VARIATION

Why does point matching fail? Return to the first operation imposed
by the method of moments on Eq. 1, i.e., integrating with respect to a
weighting function:

f W.(s) a i. L f.(s) ds = f Wj(s) g(s) ds j = 1, ... , n (18)
s i s

It is assumed that the integral and the summation may be interchanged in
order to create Eq. 2. Titchmarsh [7] proves that an infinite series may
be multiplied by a function of bounded variation and integrated term by
term. This theorem applies even when the series diverges. Now, the
weighting function of the boundary residual method (Eq. 5) is such a func-
tion of bounded variation, and so the resulting equations created are
valid. The point-matching method uses a delta function as a weighting
function (Eq. 8), which is not of bounded variation; bringing the integral
inside the summation is not proven to be valid unless the series is uni-
formly convergent [8], and thus the resulting point-matchi% equations may
or may not be valid. What can be said iq that when the series in Eq. 18
satisfies the Rayleigh hypothesis [9], the series converges uniformly [9],
and point matching is valid. This view is consistent with Lewin [10].

THE FAILURE OF POINT MATCHING BY REPEATED LIMITS

This paper shows that point matching, and indeed the method of
moments and the boundary-residual method, may fail for another reason.
Consider the numerical form of Eq. 18:

m n m
I qp W j (s J ) I i Lfi (s p = I q p Wj(s p) g(s p j = 1, ... , n (19)

p=l Pi Pi=l 1 p=l 1

The matrix form of Eq. 12 implies that

m n n m
Lim I q pWj (s p) Lim I aiLfi (s) : Lim a.i Lim I q pW(s p)Lfi(s p)
m•- p=l n.- i=l n-• i=l m4- p=l

(20)

in order for proper convergence to hold. If the number of integration
points (m) is large enough, the series form of Eq. 19 will closely approxi-
mate the integral form (Eq. 18), and the interchange of series limits
should remain valid. Point-matching forces m = n, and for it to be valid,
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the simultaneous double limit (m, n ÷ •) must be a valid operation. This

validity does not, in general, hold, as shown by a simple example discussed

by Carslaw [11]:

N

s N(x) I • f (x) (21)

p=l

where

f (x) - (22)
p 1)x + 1 px + 1

N (x) = 1 NXT1 (23)

From Eq. 22, at x = 0,

f (0) = 0 (24)

Thus,

NLm 0SN(0)) = s(O) = 0 (25)
N--

From Eq. 23, for x > 0,

Lim (s NX)) = s.(x) = 1 x > 0 (26)

N-N

Thus, the infinite series s (x) has a discontinuity at x = 0. It is

interesting to note that the partial sum defined by Eq. 21 is a sum of
continuous functions, and this is also continuous. The limiting sum s is

not continuous, however, and it is this difference that can cause problems
with taking repeated limits.

Consider the limit,

Lim Lim (s N(x)) = A (27)

N- x0O

Let
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c =(28)
N

where c is any positive constant. As N approaches infinity, x will
approach zero, and it seems reasonable that

c (9
A Lim sn (29)

From Eq. 23,

A 1 (30)
C + 1

Now, for any c > 0, A can be forced to take on any value between 0 and 1
through the proper choice of the constant c. Thus, the substitution given
by Eq. 28 is invalid. It is improper to take a repeated limit of a series
in this manner.

It is also improper to exchange the order of the limits in Eq. 27
for, in one case, A = 1, and in the other, A 0 0, so that

Lim Lim (s N(x)) Lim Lim (s N(x)) (31)
N- x+O xO0 N÷ N

The failure of Eq. 31 to be valid is due to the nonuniform conver-
gence of the series for x > 0. That the series defined by Eqs. 21 and 22
is nonuniformly convergent can be seen by considering any x arbitrarily
close to zero. For any arbitrarily small positive number E,

is.(0) - s N(x)I = xl+ 1j < C (32)

it must be true that
1

N > e x(33)
x

As x approaches zero, N must become large to satisfy Eq. 32. N must not be
dependent on the position within the interval for uniform convergence to
hold.

Again, for point matching, the conclusion drawn from this discussion
is that point matching is only rigorously valid when the summation in Eq. 1
and Eq. 19 converges uniformly everywhere it is used; satisfaction of the
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Rayleigh hypothesis ensures this condition [9]. Unfortunately, determining
when a boundary satisfies the Rayleigh hypothesis is not always simple;
even a boundary that satisfies the hypothesis can fail through a simple
coordinate transformation [10]. Bates [91 suggests using conformal trans-
formations to determine if a boundary satisfies the Rayleigh hypothesis,
but this method weakens the main advantage of point matching; i.e., namely
simplicity.

Moreover, the implication for the method of moments and the boundary-
residual method is that the number of integration points (i) must be much
larger than the number of functions f.(n). Somewhere between this condi-
tion (m >> n) and that of point matching (m = n), both of these methods may
fail. Indeed, this view is borne out by results found from Ikuno and
Yasuura [61 in which their "improved point-matching method" converges for m
> 2n, but fails otherwise.

As a final heuristic argument explaining the failure of point match-
ing, consider a "function fitting" view of this method in which a set of
functions (Lf. in Eq. 1) is used to fit a driving function (g in Eq. 1)
over an inter'al (the boundary s):

n
a e h.(s) = g(s) (34)

i =1

where hi(s) = L fi(s). Point matching forces this equation to be true on a
discrete set of n points along s. In between these points, however, the
functions hi are unconstrained and can take on any value. The measure of
the residual of the problem (i.e., how well the fitting functions fit the
driving function) is over a discrete set of points of g(s), and it is
therefore over a set of measure zero on g(s). An infinite number of func-
tions can be found which equal g(s) on a set of measure zero and produce
the same point matched solution, even as the number of fitting points (n in
Eq. 1) approaches infinity [2]! The method of moments and the boundary-
residual method do not fail because the fitting functions are smoothed
everywhere along the boundary by the integral in Eqs. 3 and 4. The
residual is not over a set of measure zero, and the fitting functions
converge in the mean to the proper value [71.

An example will illustrate this view. Consider a set of odd poly-
nomials used to represent sin (21rx) over the interval 0 < x < 1:

N
San(27rx) 2 n+l sin (27x) 0 < x < 1 (35)

n=O

Figures 1-3 compare the errors of this fit for the case of point matching
versus the boundary-residual method. The plots clearly show how the
boundary-residual method smooths the error across the entire interval. The
error of the point-matching method varies wildly between fitting points,
even as the number of fitting functions (N in Eq. 35) increases.
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Fig. 1. The errors of Eq. 35 corresponding to the point-matching case
(a) and the boundary-residual cases (b) for 4 series terms.
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Fig. 2. A comparison of the errors between the point-matched (a) and
the boundary-residual solutions (b) for 8 series terms.
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Fig. 3. A comparison of the errors between the point-matched (a) and
the boundary-residual solutions (b) for 16 series terms.

A REFORMULATION OF POINT MATCHING

Bunch and Grow [121 have proposed a method of using the boundary-
residual method which retains most of the simplicity of point matching, but
which is rigorously convergent. Recall that in the boundary-residual case,
the weighting functions are given by Eq. 5. Using these in Eq. 13 produces

=t= + =t +
P Pt a_=P G (36)

where t denotes the complex conjugate transpose, and P is given by Eq.
14. Numerically, this equation is equivalent to solving the equation,

P at G (37)

in the least-squares sense [121. Remember, m > n in Eq. 37, and so there
are more rows than columns. Rather than calculating the matrix product in
Eq. 36, however, Eq. 37 can be solved directly and equivalently using
Householder transforms [12, 13] or using a singular value decomposition
[12, 13]. This method retains the advantages of point matching in which a
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wave expansion is set up as in Eq. 1 and forced to satisfy the boundary
conditions, yet it retains the convergent properties of the boundary-
residual method [2, 31. The method is rigorously convergent because the
boundary-residual method (Eq. 36) is rigorously convergent [2, 3], and it
creates an identical numerical solution [12, 13] without having to form the
matrix product. It is similar to the method proposed by Ikuno and Yasuura
[61, except the connection to the method of moments and the boundary-
residual method have been clearly shown.

The direct formulation of Eq. 37 also has the advantages of being
more numerically stable and quicker to solve than Eq. 36 [12, 13]. The
sýability problems occur when one or mor¶ eigenvalues of the matrix product
P P are close to zero, in which case P P is nemrlly singular. It is easy
to show that the eigenvalues of the product P P are the square of the
singular values of the matrix P. The matrix P can be decomposed into its
singular values,

P = V u (38)

where o is a diagon~l matrix .of singular values; V and U are orthogonal
matrices in which V = V = (i, where I is the identity matrix.
Forming the product P P,

t =1 -(9

= U (a) U (39)

Thus, if týe matrix P has a singular value a closý to zero, the
matrix product P P will have a corresponding eigenvalue a even closer to
zero. The equation defined by Eq. 36 will thus be more unstable numer-
ically than Eq. 37. Further, solving Eq. 37 directly using a singular
value decomposition has the added advantage that the singular values caus-
ing numerical instabilities may be discarded in computing the solution
[14].

Solving the direct form of the electromagnetic problem may have
advantages over using the method of moments. The method of moments creates
a matrix problem as in Eq. 12. The matrix consists of a sum for each ele-
ment due to the numerical integration of the weighting function. The com-
putation of the element sums can be time consuming as the number of sums
increases as the square of the matrix size. On the other hand, the direct
formulation does not need sums to be computed, but it solves the problem
directly. This advantage in speed, however, may be offset by the need for
extra storage, as the matrix in the direct formulation is overdetermined
(the number of rows is greater than the number of columns). Ikuno and
Yasuura [6] have reported good results in a similar formulation when the
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numbers of rows (corresponding to boundary points) is greater than twice
the number of columns (corresponding to wave expansion functions).

Another consideration is that the singular value decomposition is
well-behaved and well-suited for solving the direct formulation in a least-
squares oense [13]. The singular value decomposition method allows one to
have control over the singular values to produce a well-behaved solution
even with a nearly singular set of equations [14]. This control is advan-
tageous when the formulation of the problem produces a nearly singular set
of equations as when using a large number of wave expansion functions.

The direct method may also be used for solving scattering problems
when the induced current on the scattering surface is expanded as a sum of
unknown basis functions. Butler and Wilton [16] have investigated the
application of the method of moments as applied to thin-wire scatterers
with several different basis sets to represent the wire current. They
found the convergence of the solution depended strongly on the basis func-
tions used as well as whether the equations solved were cast in Pocklington
(electric field) or Hall~n (magnetic vector potential) integral form.
Their testing functions were delta functions forcing their method of solu-
tion to be that of point matching. As stated, point matching may fail to
converge to the correct solution; in this case, point matching was satis-
factory because the geometry of the scatterer was simple (the Rayleigh
hypothesis was satisfied) and no singularities in the fields existed on the
scatterer. Using the direct formulation in this case, however, would allow
the technique to be extended to scatterers of more complicated geometry.
The dependence of convergence on the choice of basis functions used to
represent the wire current would still remain, but an advantage of the
direct method is that the singular value decomposition would be ideal for
the problem of ill-conditioned matrices found in some of their test cases.

A SPHERICAL CAVITY EXAMPLE

To illustrate the use of Eq. 37, we solved the resonances of the
spherical cavity using cylindrical wave functions. A scalar expansion for
the fields is given by [17]

j2r n

= an JZ Ynp) e (40)
n

with

y = k2-(ý2,Qn (41)
n =p-

J is the cylindrical Bessel function of the first kind of order
[17], k is the wave number (w/c), and p is the diameter of the cavity.
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This wave expansion is used to create the electric field [17] whose tangen-
tial value is minimized on the sphericdl boundary.

Figure 4 shows the minimum singular value over the wave number of the
overdetermined matrix using Eq. 40. In this case, we do not have an inci-
dent field and so the right-hand side of Eq. 37 is zero. The minimum
singular value of the matrix of Eq. 37 gives an indication of how well the
wave expansion (Eq. 40) fits the boundary conditions over frequency [18].
The dips in the singular value are the resonances of the cavity, and these
gradually approach the exact resonances (shown as dotted lines) as the
number of wave functions (n in Eq. 67) increases. As shown, good results
are obtained using only a few number of wave functions.

0.00 2.00 4.00 6.00 8.00 10.00

2.00 2.00

A^ LEO1.60A

0I
> 1.2 ID1.20
L
0

0.80 0.80

r

" 0.40 0.40

C
0 0I I I 0.0 0

0.00 2.00 4.00 6.00 9.00 10.00

KOP >>>

Fig. 4. The minimum singular value over wave number for the
spherical cavity with 9 = 0. The dotted line shows an
exact resonance. The results are shown for n = 0 (a),
n = -1, ... , 1 (b), -2, ... , 2 (c), and -3, ... , 3 (d).

CONCLUSIONS

This paper has shown how the method of moments can collapse to the
point-matching method and the boundary-residual method; it can do so in two
ways. The boundary-residual method has also been shown to revert to point
matching in some cases. A large number of sampling points for numerical
integration in either the method of moments or the boundary-residual method
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can prevent this collapse. The point-matching method is unconstrained

between data points; an example has shown that the error of the functions
between these points can fluct,;ite wilaly. Finally, a formulation has been
given wnich retains the sirr:,icity of point matching while retaining the
rigorous convergence prorer-jes of the method of moments or the boundary-
residual method.
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SOLUTION OF TEAM BENCHMARK PROBLEM #10
(STEEL PLATES AROUND A COIL)

0. Biro
Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria

Abstract - Problem No. 10 of the TEAM Workshops is solved by three different finite-element formulations
using a magnetic vector potential with the Coulomb gauge and an electric scalar potential. Allowing the
normal component of the vector potential to jump at iron/air interfaces yields results in good agreement with
measurement data.

Problem definition

This three-dimensional, non-linear, transient eddy current problem has been proposed by
Prof. T. Nakata, N. Takahashi and K. Fujiwara as a benchmark problem for the TEAM
Workshops. For convenience, its definition is repeated here [1].

y coil
z steel ( 1 -5.64( .e ) A)

F i. eSteel

stee l plae s7nsete 0btwen hechanes.Th matraofth steel isnoleat hel

1.0 x a0

"" p3H+(....... ) (1............

120M (12 e(

(a) front view (b) plan view

Fig. 1: Steel plates around a coil (dimensions in arm)

The model is shown in Fig. 1. An exciting coil is placed between two steel channels and a
steel plate is inserted between the channels. The material of the steel is nonlinear, the
magnetextion curve is shown in Fig. 2. The curve can be approximated for high flux densities (B
> 1.8 2) asB =.uoH +(aH 2+bH+c) (1.8T:5 B:5 2.227)}
B=/poH+Ms (B ý: 2.22 7)()

where A is the permeability of free space. The constants a, b and c are -2.381x10-'°,2.327x10-1
and 1.590, respectively. Ms is the saturation magnetization (2.16 7) of the steel. The conductivity
of the channels and of the center plate is 7.505x106 S/re. The number of turns in the coil is 162.
The exciting current varies with time as
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1= {=(1e0 ") (t <0) (2)

I.(I--11") (I a0)

The amplitude is I.=5.64 A and the time constant is t--0.05 s.

2.0 I

1.5

No. B(T) H(A/m) No. B(T) H(AIm)
1 0 0 15 0.90 313
2 0.0025 16 16 1.00 342p .0 3 0.0050 30 17 1.10 377

14 0.0125 54 18 1.20 433
5 0.025 93 19 1.30 509
6 0.05 143 20 1.40 648
7 0.10 191 21 1.50 933
8 0.20 210 22 1.55 1228
9 0.30 222 23 1.60 1934

10 0.40 233 24 1.65 2913
0.5 11 0.50 247 25 1.70 4993

12 0.60 258 26 1.75 7189
13 0.70 272 27 1.80 9423
14 0.80 289

! I I I
0 2000 4000 6000 8(XX) 10000

H (A/m)

Fig. 2: B-H curve of steel

It is required to find the time fujnctions of the average flux density of the surfaces S,, S2
and S3 shown in Fig. 3 and also the time functions of the current density at the points P, P2 and
P3. These quantities have also been measured by the authors of [1].

The problem has been solved with the program package IGTEDDDY of the Institute for
Fundamentals and Theory in Electrical Engineering of the Graz University of Technology. Three
solutions have been obtained by formulations using a magnetic vector potential throughout and an
additional electric scalar potential in the eddy current region.
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Fig. 3: Measurement positions for flux densities and current densities

A,V-A formulation, A. continuous

This is the well-known A,V-A formulation (2] with the magnetic flux density and the

electric field intensity derived from the potentials as

B=V×A, (3)

E= A do'
ok 6k (4)

where A is the magnetic vector potential and v is the time integral of the electric scalar potential.
The governing differential equations are

0V xv A)-V(vV.A)+ -- +oV--=0 inconductors, (5)

6A 6v
V. (-. o--- oV .- ) = 0 in conductors, (6)

V x (vV x A) - V( vV. A) = J in non-conductors. (7)

These equations enforce the Coulomb gauge on the vector potential. Using nodal finite elements

with one value for each component of A in each node, the vector potential is continuous.

The time functions of the average flux density and of the eddy current density in the

positions required are plotted in Fig. 4 and in Fig. 5, respectively along with the measured results

[i]. The numerical values are shown in Tables 1.1 and 1.2 whereas some fbrther information on

the computation is summarized in Table 1.3
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Although the discretization is very fine, the average flux density is somewhat lower than
measured while the current density is too high.

2.0

S'

1.60 ~ 0 0 0 a 0 0

1.0-

S3

0.,-

0.00

0.00 0.06 0.10 0.15
t/seconds

Fig. 4: Time functions of average flux densities, A,V-A formulation, A• continuous
o o o o: measurement, computation
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Fig. 5: Time functions of current densities, A,V-A formulation, Ak continuous
o o o o: measurement, - : computation
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position (~coordinates ninra) ]position (coordinates in nl

Sl S2 S3 PI P2 P3
time t(s) O.O<X< 1.6 x--41.8 122.1<x<125.3 timec t(s) x-- .6 x--41.8 x--12 5.3
step 0.0<y<25.0 0.0<y<25.0 0.0<y<25.0 step y--6.25 y--6.2 5 y=6.25

z=0.0 60.0<z<63.2 z-0.0 z=0.0 z--63.2 z=0.0
1 0.0025 0.0211i 0.0086 0.0090 1 0.0025 1.0648 0.4366 0.4386
2 0.0050 0.0548 0,0229 0.0238 2 0.0050 1.7679 0.7297 0.7357

3 0.0075 0.1016 0.0431 0.0447 3 0.0075 2.5866 1.0506 1.0598
4 0.010O0 0. 1631 0.0708 0.0741 4 0.010O0 3.5277 1.4662 1.5063
5 0.0125 0.2375 0.1068 0.1141 5 0.0125 4.3290 1.9602 2.0940
6 0.0150 0.3203 0.1479 0.1607 6 0.0150 4.8750 2.2969 2.5105
7 0.0175 0.4056 0.1908 0.2098 7 0.0175 4.9736 2.4331 2.7090
8 0.0200 0.4894 0.2334 0.2590 8 0.0200 4.8281 2.4520 2.7450
9 0.0225 0.5694 0.2745 0.3068 9 0.0225 4.4601 2.3954 2.7396
10 0.0250 0.6448 0.3133 0.3521 10 0.0250 4.1797 2.3063 2.6564
11 0.0275 0.7163 0.3501 0.3948 11 0.0275 3.9941 2.2157 2.5615
12 0.0300 0.7846 0.3848 0.4350 12 0.0300 3.8760 2.1009 2.3980
13 0.0325 0.8503 0.4181 0.4733 13 0.0325 3.8194 1.9982 2.2859
14 0.0350 0.9139 0.4502 0.5101 14 0.0350 3.7438 1.9240 2.2113
15 0.0375 0.9752 0.4811! 0.5457 15 0.0375 3.5848 1.8598 2.1302
16 0.0400 1.0338 0.5108 0.5798 16 0.0400 3.3809 1.7875 2.0507
17 0.0425 1.0896 0.5392 0.6126 17 0.0425 3.1439 1.7260 2.0039
18 0.0450 1.1421 0.5662 0.6440 18 0.0450 2.8197 1.6526 1.9295
19 0.0475 1.1908 0.5916 0.6737 19 0.0475 2.4771 1.5668 1.8350
20 0.0500 1.2356 0.6153 0.7018 20 0.0500 2.1379 1.4761 1.7185
21 0.0550 1.3114 0.6566 0.7518 21 0.0550 1.5100 1.3081 1.5442
22 0.0600 1.3722 0.6914 0.7951 22 0.0600 0.9941 1.1196 1.3502
23 0.0650 1.4191 0.7198 0.8316 23 0.0650 0.6422 0.9297 1.1525
24 0.0700 1.4541 0.7426 0.8618 24 0.0700 0.3874 0.7620 0.9494
25 0.0750 1.4791 0.7605 0.8866 25 0.0750 0.2213 0.6091 0.7716
26 0.0800 1.4970 0,7744 0.9069 26 0.0800 0. 1519 0,4821 0.6318
27 0.0850 1.5147 0.7876 0.9248 27 0.0850 0.2376 0.4290 0.5311
29 0.0900 1.5279 0.7981 0.9398 28 0.0900 0.1697 0.3426 0.4303
29 0.0950 1.5339 0.8054 0.9514 29 0.0950 -0.0041 0.2453 0.3208
30 0.1000 1.5397 0.8118 0.9615 30 0.1000 0.0295 0.2100 0.2670
31 0.1100 1.5598 0.8259 0.9807 31 0.1100 0.1796 0.2109 0.2507
32 0.1200 1.5713 0.8358 0.9952 32 0.1200 0.0873 0,1474 0.1882
33 0.0130 1.5834 0.8447 1.0077 33 0.0130 0.1158 0.1291 0.1597
34 0.0140 1.5899 0.8508 1.0168 34 0.0140 0.0493 0.0871 0.1086
35 0.0150 1.5929 0,8548 1.0234 35 0.0150 0.0128 0.0580 0.0737

Table 1. 1: Average flux densities in steel (T) Table 1.2: Y-component of eddy current
A,V-A formulation, An continuous densities on surface of steel (101 A/m2)

A,V-A formulation, k• continuous
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No Item Specification
I Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 Governing equations V x (W x A)- V( V. A) + ah + oV-= 0 in conductor

a• a
V x (vV x A)- V(v0 V'A) J in vacuum

4 Solution variables A, v in conductor
A in vacuum

5 Gauge condition imposed on governing equations directly
6 Time difference method 0 method with O=I (backward difference)
7 Technique for non-linear problem Incremental method

Convergence criterion mean ( Ap, /I,) <1% over all Gaussian points
max ( A4, 1.y, ) < 5% over all Gaussian points

8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field taking into account exciting current in governing

produced bv exciting current equations directly
11 Property of coefficient matrix of linear equations symmetric, sparse
12 Solution method for linear equations ICCG

Convergence criterion for iteration method iir +bbl 2 /lql2 < 10-0

13 Element type hexahedron

nodal element (20 nodes)
14 Number of elements 7,344
i5 Number of nodes 32,986
16 Number of unknowns 88.079
17 Computer name: DECstation 5000-200

speed: 24 MIPS
main memory: 264 MB
precision of data: 64 bits
CPU time total: 443,117 s

Table 1.3: Computational data, A,V-A formulation, An continuous

A,V-A formulation, A. discontinuous

The reason for the above behaviour is that once the Galerkin method is applied to the term
-V( vV. A) in the differential equations (5) and (7), the continuity of the quantity vV- A becomes
a natural interface condition [2]. Although vV -A is zero in the weak sense [2], it does in fact
have a nonzero value due to the numerical approximation. This results in a tough constraint on
V -A along interfaces where the reluctivity v changes abruptly: there must be a jump in the
divergence of the vector potential. Thus the accuracy is bound to be poor in the vicinity of such
iron/air interfaces. In the present problem with thin ferromagnetic channels, the solution in the
entire iron region is bound to be strongly influenced by this inaccuracy.

The problem can be overcome by refining the discretization, so that the condition
vV - A =0 is fulfilled with greater accuracy and the constraint on V - A has less effect. Indeed, the

experience of the author has shown that a coarser mesh yields much poorer results than those
shown above.

The constraint on the continuity of vV -A can be relaxed by allowing the normal
component of the vector potential to be discontinuous on the iron/air interfaces [3]. As a
consequence, the natural boundary condition vV -A =0 results on the interface and the constraint
on V -A is not present any more. At the application of finite element techniques, the normal
component A, is allowed to be discontinuous by employing four nodal variables in the nodes on
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the interface: the two continuous tangential components and a normal component from the air
region as well as one from the iron domain.

The time functions of the average flux density and of the eddy current density obtained by
this method in the positions required are plotted in Fig. 6 and in Fig. 7, respectively with the
measured results also shown. The numerical values are given in Tables 2.1 and 2.2 whereas some
further information on the computation is summarized in Table 2.3

The agreement with the measured results is much better than for the case when A, is
continuous, although the same mesh has been used. The computation time is somewhat longer,
due to the higher number of conjugate gradient iterations needed for the solution of the linear
equations systems. It is expected that good results can be obtained by substantially coarser
meshes, too.

Ar,V-Ar formulation, Ar. discontinuous

The finite element mesh used in the above computations does not exactly fit the curved
parts of the racetrack coil. This potentially leads to inaccuracies if the total vector potential
defined by eq. (3) and the differential equations (5) to (7) are used since the representation of the
current density may be inaccurate. To check whether this is the case, a reduced vector potential
formulation has also been tried [3]. In this method the magnetic field Hs and vector potential As
due to the coil in free space are split from the solution and it is therefore irrelevant whether the
coil is exactly modelled by the finite element mesh.

The potentials are defined by

B =• 0 Hs + V x Ar, (8)
E A ' r A (9)

where Ar' is the reduced vector potential. The governing differential equations are

Vx(VXA,)-V(vVV-AAr +oVA' = 'OA-s -Vx( vp0Hs) in conductors, (10)a a 07
V. (_ _-Ar Ov V. (ar--A-) in conductors, (11)

V x (v 0V x Ar)- V(voV.A ) = 0 in non-conductors. (12)

In order to avoid the inaccuracies due to the continuity of Am in the vicinity of the iron/air
interfaces, the normal component of the reduced vector potential has been allowed to be
discontinuous here.

The time functions of the average flux density and of the eddy current density obtained by
this method in the positions required are plotted in Fig. 8 and in Fig. 9, respectively with the
measured results also shown. The numerical values are given in Tables 3.1 and 3.2 whereas some
further information on the computation is summarized in Table 3.3.
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The results are practically identical with those obtained by the total vector potential, i.e.
the inaccurate modelling of the coils has caused no loss of precision in the A,V-A version.
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Fig. 6: Time functions of average flux densities, A,V-A formulation, A. discontinuous
o o o o: measurement, computation
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Fig. 7: Time functions of current densities, A,V-A formulation, A. discontinuous
o oo o: measurement, : computation
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position (coordinates in amu) position (coordinates in
SI S2 S3 P1 P2 P3

time t(s) 0.0<x< 1.6 x-41.8 122.1<x<125.3 time t(s) x-1.6 x=4 .8 x-125.3
step 0.0<y<25.0 0.0<y<25.0 0.0<y<25.0 step y=6.25 y=6 .2 5 y=6.25

Z=0.0 60.0<z<63.2 Z=0.0 z=0.0 z=63.2 z-=.O
1 0.0025 0.0222 0.0093 0.0098 1 0.0025 1.0263 0.4403 0.4458
2 0.0050 0.0582 0.0247 0.0259 2 0.0050 1.6489 0.7311 0.7440
3 0.0075 0.1090 0.0469 0.0491 3 0.0075 2.2837 1.0457 1.0698
4 0.0100 0.1753 0.0774 0.0818 4 0.0100 2.9981 1.4119 1.4821
5 0.0125 0.2564 0.1172 0.1266 5 0.0125 3.6971 1.8179 1.9900
6 0.0150 0.3465 0.1624 0.1783 6 0.0150 4.1405 2.0703 2.3195
7 0.0175 0.4394 0.2095 0.2325 7 0.0175 4.3106 2.1641 2.4631
8 0.0200 0.5300 0.2557 0.2861 8 0.0200 4.2053 2.1471 2.4638
9 0.0225 0.6170 0.3004 0.3381 9 0.0225 4.0380 2.0731 2.4047
10 0.0250 0.6991 0.3429 0.3878 10 0.0250 3.7800 1.9908 2.3406
11 0.0275 0.7765 0.3829 0.4345 11 0.0275 3.5729 1.8946 2.2397
12 0.0300 0.8501 0.4206 0.4783 12 0.0300 3.4316 1.7901 2.1117
13 0.0325 0.9204 0.4565 0.5198 13 0.0325 3.3226 1.7002 1.9825
14 0.0350 0.9879 0.4909 0.5595 14 0.0350 3.2144 1.6262 1.9017
15 0.0375 1.0528 0.5239 0.5976 15 0.0375 3.1307 1.5610 1.8203
16 0.0400 1.1153 0.5557 0.6343 16 0.0400 3.0437 1.5029 1.7528
17 0.0425 1.1751 0.5862 0.6696 17 0.0425 2.9261 1.4455 1.6955
18 0.0450 1.2319 0.6153 0.7034 18 0.0450 2.7909 1.3803 1.6219
19 0.0475 1.2854 0.6429 0.7356 19 0.0475 2.6483 1.3144 1.5519
20 0.0500 1.3355 0.6689 0.7662 20 0.0500 2.5040 1.2477 1.4841
21 0.0550 1.4217 0.7150 0.8212 21 0.0550 2.1577 1.1114 1.3464
22 0.0600 1.4918 0.7540 0.8687 22 0.0600 1.7497 0.9513 1.1735
23 0.0650 1.5457 0.7857 0.9088 23 0.0650 1.3192 0.7846 0.9991
24 0.0700 1.5842 0.8105 0.9416 24 0.0700 0.9306 0.6234 0.8244
25 0.0750 1.6094 0.8292 0.9677 25 0.0750 0.6056 0.4805 0.6653
26 0.0800 1.6298 0.8448 0.9896 26 0.0800 0.4867 0.4056 0.5626
27 0.0850 1.6412 0.8562 1.0069 27 0.0850 0.2718 0.3037 0.4467
28 0.0900 1.6465 0.8644 1.0203 28 0.0900 0.1198 0.2248 0.3503
29 0.0950 1.6488 0.8706 1.0310 29 0.0950 0.0586 0.1741 0.2815
30 0.1000 1.6565 0.8778 1.0417 30 0.1000 0.1824 0.1934 0.2735
31 0.1100 1.6768 0.8927 1.0620 31 0.1100 0.2435 0.1931 0.2564
32 0.1200 1.6858 0.9022 1.0763 32 0.1200 0.1078 0.1252 0.1790
33 0.0130 1.6872 0.9075 1.0856 33 0.0130 0.0112 0.0738 0.1192
34 0.0140 1.6852 0.9105 1.0916 34 0.0140 -0.0316 0.0429 0.0774
35 0.0150 1.6R26 0.9123 1.0955 35 0.0150 -0.0252 0.0275 0.0506

Table 2.1: Average flux densities in steel (T) Table 2.2: Y-component of eddy current
A,V-A formulation, Ak discontinuous densities on surface of steel (10s A/m2 )

A,V-A formulation, An discontinuous
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No Item Specification
I Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 Governing equations V X (OV x A)-V(i& .A)+ a.CA + aV 0= in conductor

V x ( vV x A)-V(v0 V.A)= J in vacuum

4 Solution variables A, v in conductor
A in vacuum

5 Gauge condition imposed on governing equations directly, A. discontinuous on
iron/air interface

6 Time difference method 0 method with 0=1 (backward difference)
7 Technique for non-linear problem Incremental method

Convergence criterion mean( 4u,/p,)< 1% overall Gaussian points
max ( A,1u, ) < 5% over all Gaussian points

8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field taking into account exciting current in governing

produced by exciting current equations directly
S1I Property of coefficient matrix of linear equations symmetric. sparse

12 Solution method for linear equations ICCG
Convergence criterion for iteration method + bbl'/lb1' < 10.0

13 Element type hexahedron

nodal element (20 nodes)

14 Number of elements 7.344
15 Number of nodes 32,986
16 Number of unknowns 89,279
17 Computer name: DECstation 5000-200

speed: 24 MIPS
main memory: 264 MB
precision of data: 64 bits

I CPU time total: 663,663 s

Table 2.3: Computational data, A,V-A formulation, An discontinuous
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Fig. 8: Time functions of average flux densities, A,V-A, formulation, A. discontinuous
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position (coordinates in nun) position (coordinates in 7m 7=
S1 S2 S3 Pl P2 P3

time t(s) 0.0<x< 1.6 x=41.8 122.1<x<125.3 time t(s) x=1.6 x=41.8 x-125.3
step 0.0 <y<2 5 .0 0.0<y<25 .0 0.0 <y<2 5 .0 Step y=6.25 y--625 y--6 .25

z0-50.0 60.0<z<63.2 z=0.0 z=0.0 z=63.2 z-0.0
1 0.0025 0.07 0.0093 0.0092 1 0.0025 1.0805 0.4390 0.4155
2 0.0050 0..Ji2 0.0249 0.0246 2 0.0050 1.7310 0.7360 0.7099
3 0.0075 0.1142 0.0474 0.0470 3 0.0075 2.3863 1.0575 1.0303
4 0.0100 0.1824 0.0781 0.0787 4 0.0100 3.0836 1.4188 1.4316
5 0.0125 0.2651 0.1179 0.1223 5 0.0125 3.7678 1.8206 1.9378
6 0.0150 0.3566 0.1632 0.1731 6 0.0150 4.2121 2.0724 2.2730
7 0.0175 0.4502 0.2103 0.2265 7 0.0175 4.3720 2.1633 2.4171
8 0.0200 0.5425 0.2565 0.2793 8 0.0200 4.2573 2.1450 2.4245
9 0.0225 0.6305 0.3011 0.3304 9 0.0225 4.0869 2.0678 2.3598

10 0.0250 0.7134 0.3435 0.3794 10 0.0250 3.8132 1.9864 2.3002
11 0.0275 0.7917 0.3836 0.4255 11 0.0275 3.6167 1.8924 2.2074
12 0.0300 0.8664 0.4214 0.4688 12 0.0300 3.4921 1.7916 2.0755
13 0.0325 0.9377 0.4574 0.5098 13 0.0325 3.3717 1.7007 1.9641
14 0.0350 1.0062 0.4918 0.5489 14 0.0350 3.2707 1.6273 1.8719
15 0.0375 1.0721 0.5249 0.5865 15 0.0375 3.1866 1.5630 1,8011
16 0.0400 1.1354 0.5567 0.6227 16 0.0400 3.0944 1.5038 1.7303
17 0.0425 1.1960 0.5872 0.6576 17 0.0425 2.9617 1.4444 1.6672
18 0.0450 1.2533 0.6163 0.6909 18 0.0450 2.8246 1.3779 1.5989
19 0.0475 1.3071 0.6438 0.7225 19 0.0475 2.6758 1.3089 1.5261
20 0.0500 1.3571 0.6696 0.7525 20 0.0500 2.5130 1.2350 1.4533
21 0.0550 1.4425 0.7150 0.0061 21 0.0550 2.1364 1.0942 1.3093
22 0.0600 1.5110 0.7530 0.8522 22 0.0600 1.6995 0.9275 1.1349
23 0.0650 1.5625 0.7835 0.8906 23 0.0650 1.2626 0.7554 0.9568
24 0.0700 1.5982 0.8070 0.9216 24 0.0700 0.8532 0.5922 0.7829
25 0.0750 1.6200 0.8242 0.9459 25 0.0750 0.5265 0.4450 0.6216
26 0.0800 1.6311 0.8364 0.9646 26 0.0800 0.2665 0.3246 0.4855
27 0.0850 1.6367 0.8453 0.9794 27 0.0850 0.1252 0.2455 0.3863
28 0.0900 1.6453 0.8542 0.9929 28 0.0900 0.2064 0.2399 0.3515
29 0.0950 1.6574 0.8636 1.0061 29 0.0950 0.2913 0.2474 0.3375
30 0.1000 1.6653 0.8711 1.0171 30 0.1000 0.1912 0.1981 0.2834
31 0.1100 1.6842 0.8854 1.0370 31 0.1100 0.2247 0.1855 0.2504
32 0.1200 1.6916 0.8942 1.0508 32 0.1200 0.0862 0.1171 0.1758
33 0.0130 1.6812 0.8952 1.0568 33 0.0130 -0.1320 0.0236 0.0809
34 0.0140 1.6826 0.8993 1.0640 34 0.0140 0.0220 0.0546 0.0907
35 0.0150 1.6829 0.9024 1.0698 35 0.0150 0.0108 0.0423 0.0730

Table 3.1: Average flux densities in steel (T) Table 3.2: Y-component of eddy current
AmV-Ar formulation, Am discontinuous densities on surface of steel (105 A/M2)

A,,V-A, formulation. Am discontinuous
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No Item Specification
I Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 Governing equations V x(vVx A,)V( W-A,) V

- _V x ( vp H) in conductor

V x ( v0V x A,)-V(voV-A,) = 0 in vacuum

4 Solution variables A, v in conductor
A, in vacuum

5 Gauge condition imposed on governing equations directly, A. discontinuous
on iron/air interface

6 Time difference method 0 method with 0=1 (backward difference)
7 Technique for non-linear problem Incremental method

Convergence criterion mean ( A5p, Ip,) <1% overall Gaussian points
max ( Au,,/ p, ) < 5% over all Gaussian points

8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field Biot-Savart law (analytical)

produced by exciting current Biot-Savart law (numerical)
11 Property of coefficient matrix of linear equations symmetric. sparse
12 Solution method for linear equations ICCG

Convergence criterion for iteration method jr + bl2 /Ibj' < 10`°

13 Element type hexahedron
nodal element (20 nodes)

14 Number of elements 7,344
15 Number of nodes 32.986
16 Number of unknowns 89.278
17 Computer name: DECstation 5000-200

speed: 24 MIPS
main mcmory: 264 MB
precision of data: 64 bits

I CPU time total: 685.377 s

Table 3.3: Computational data, A,,V-A, formulation, Am discontinuous
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SOLUTION OF TEAM BENCHMARK PROBLEM #13
(3-D NONLINEAR MAGNETOSTATIC MODEL)

0. Biro, Ch. Magele, G. Vrisk
Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria

Abstract -Problem No. 13 of the TEAM Workshops is solved by two scalar potential and one vector potential
finite-element formulations. The results obtained by the different scalar potential methods are identical and
their agreement with those yielded by the vector potential approach and also with measurement data is
satisfactory.

Problem definition

This three-dimensional, non-linear, magnetostatic problem has been proposed by Prof T.
Nakata and K. Fujiwara as a benchmark problem for the TEAM Workshops. For convenience, its
definition is repeated here [1,6].

The model is shown in Fig. 1. An exciting coil is placed between two steel channels shifted
as shown and a steel plate is inserted between the channels. The material of the steel is nonlinear,
the magnetization curve is shown in Fig. 2. The curve can be approximated for high flux densities
(B> 1.8 7)as

B = uoH+(aH2 +bH+c) (1.8T_5 B _< 2.22T}
B = ptoH + Us (B>_ý 2.227")(I

where A is the permeability of free space. The constants a, b and c are -2.822x10-'0,2.529x10-'
and 1.591, respectively. M, is the saturation magnetization (2.16 7) of the steel. The coil is
excited by a d.c. current. The total current is 1000 AT in one case and 3000 AT in the other.
Presently the problem is only open for the 1000 AT case.

center plate (steel) Y coil-stee
coil (dc 1000

channel (steel) ' and 3000AT) _

tee').' 

I tT

o xo

0120 1K 120 1.{.

3.2 4.2 3.2
1 1501 2

(a) front view (b) plan view

Fig. I: 3-D nonlinear magnetostatic model (dimensions in mm)
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2.0

1.5 _No. B (T) H (A/m/01 0 0 13 1.00 330
2 0.025 45 14 1.10 365
3 0.05 75 15 1.20 415

'•1.0 04 . 10 120 16 1.30 500
5 0.20 173 17 1.40 640
0 0.30 201 S 18 1.50 890
7 0.40 222 19 1.55 1150
8 0.50 240 20 1.60 1940

0.5 9 0.60 250 21 1.65 3100
10 0.70 265 22 1.70 4370
11 0.80 280 23 1.75 6347
12 0.90 300 24 1.80 8655

1 1 I 1
0 2000 4000 6000 8000 10000

H (A/m)

Fig. 2: B-H curve of steel

It is required to obtain the average flux densities at several locations in the channels and in
the center plate as well as along a line and at some specified points in air (see e.g. Tables 1.1 to
1.3)

The problem has been solved with the program package IGTEMAG3D of the Institute for
Fundamentals and Theory in Electrical Engineering of the Graz University of Technology. Three
solutions have been obtained, two by formulations using a magnetic scalar potential and one by
employing a magnetic vector potential. The finite element meshes have been selected so that the
number of degrees of freedom is about 200,000.

0'--T formulation

This is the well known formulation in terms of a reduced and a totuil magnetic scalar
potential [2]. The magnetic field intensity in the free space region is written as
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H = Hs - VD (2)

using the reduced scalar potential (D and the source field H. due to the coil in free space
computed by Biot-Savart integration. In the iron regions, the magnetic field intensity can be
derived from the total scalar potential TI:

H = -VTP. (3)

The two potentials are linked at the interface using the continuity condition of the
tangential component of H:

D = - f Hs," ds. (4)

The average flux density values in the three sections of the channel, along the specified
line in the air and at the specified points are shown in Tables 1.1, 1.2 and 1.3. Some further
information concerning the computation is summarized in Table 1.4.

T-0 formulation

This is the well known T-Q method [3] where the magnetic field intensity is written as

H= T- V4. (5)

The function T is selected to satisfy

V x T = J. (6)

In the present calculation T was chosen to have a single axial component assuming a constant
value in the air core of the racetrack coil, linearly decreasing to zero within the windings and zero
outside the coil. To avoid cancellation errors, T was represented with the aid of edge elements by
computing its integral along each edge in the finite element mesh [4].

The average flux density values in the three sections of the channel, along the specified
line in the air and at the specified points are shown in Tables 2.1, 2.2 and 2.3. Some further
information concerning the computation is summarized in Table 2.4.

The results are practically identical to those obtained by the )-TP formulation. The
computation time is somewhat lower since no Biot-Savart integration is necessary. In the
conjugate gradient iterations, it suffices to use a convergence criterion of 10-vinstead of 10-12 with
respect to the right hand side vector in order to attain the same precision in the solution.
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No. _____coodin~atesQi~ (mm ___ B(T No coordinates (nun) B(T)
x z - x y z

1 0.0 1.420 26 10.0 0.0348
2 10.0 1.406 27 20.0 0.0209
3 20.0 1.373 28 30.0 0.0164
4 0.0<x<1.6 -25.0<y<25.0 30.0 1.317 29 40.0 0.0143
5 40.0 1.232 30 50.0 0.0130
6 50.0 1.072 31 60.0 20.0 55.0 0.0120
7 60.0 0.608 32 70.0 0.0109
8 2.1 0.320 33 80.0 0.00876
9 10.0 0.594 34 90.0 0.00569
10 20.0 0.678 35 100.0 0.00287
11 30.0 0.735 36 110.0 0.00140
12 40.0 0.785
13 50.0 15.O<y<65.0 60.0<z<63.2 0.827 Table 1.2: Flux density in air (T)
14 60.0 0.865 (I-' formulation
15 80.0 0.931 No coordinates (nmm) B(T)
15 100.0 0.97417 100090 - x y z
is 10.1 0.980 37 2.2 15.1 60.1 1.797

19 60.0 0.885 38 2.0 14.9 50.9 0.0287

20 50.0 0.988 39 1.5 0.0 55.0 0.517

21 40.0 0.994 40 1.5 0.0 25.0 1.349

22 122.1<x<125.3 15.0<y< 65.0 30.0 0.99 Table 1.3: Flux densities in special points (T)
23 20.0 1.003
24 10.0 1.006 cI-P formulation
25 1 1 0.0 1.007

Table 1.1: Average flux densities in steel (T)
'D-P formulation

No Item Specification
I Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
3 Govern equations V. (OVU,) = V

_____ __________________________v.(pVI)=0

4 Solution variables 0, 1P

5 Gauge condition not applicable
6 Fraction of geometry 1/4
7 Technique for non-linear problem Incremental method

Convergence criterion mean( Au,/p,)< 1% overall Gaussian points

max ( Ap, / ,u, ) < 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field Biot-Savart law (analytical)

_ produced by exciting current Biot-Savart law (numerical)
11 Property of coefficient matrix of linear equations armunetric, sparse
12 Solution method for linear equations ICCG

Convergence criterion for iteration method j,4 +bl/lI' < 1-

13 Element type hexahedron
nodal element (20 nodes)

14 Number of elements 48.384
15 Number of nodes 206,991
16 Number of unknowns 182.517
17 Computer name: DECstation 5000-240

speed: 40 MIPS
main memory: 264 MB
precision of data: 64 bits

I CPU time total: 17,899 a
Table 1.4: Computational data, 0'--T formulation
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No. coordinates (nun) B(T) No coordinates (mm) B(T)
x z x Y z

1 0.0 1.419 26 10.0 0.0348
2 10.0 1.406 27 20.0 0.0209
3 20.0 1.377 23 30.0 0.0163
4 0.0<x<1.6 -2 5 .0<y<2 5 .0 30.0 1.322 29 40.0 0.0142
5 40.0 1.237 30 50.0 0.0130
6 50.0 1.076 31 60.0 20.0 55.0 0.0120
7 60.0 0.610 32 70.0 0.0108
8 2.1 0.320 33 80.0 0.00873
9 10.0 0.594 34 90.0 0.00563
10 20.0 0.679 35 100.0 0.00296
11 30.0 0.736 36 110.0 0.00141
12 40.0 0.736 Table 2.2: Flux density in air (T)
13 50.0 15.0<y<65.0 60.0<z<63.2 0.823
14 60.0 0.s66 T-4D formulation
15 80.0 0.931 No coordinates (nmn) B(T)
Is 100.0 0.974
is 122.0 0.950 37 2.2 15.1 60.1 1.797
1 122.1 _0.950 33 2.0 14.9 50.9 0.0237
19 60.0 0.886 39 1.5 0.0 55.0 0.517
20 50.0 0.933 40 1.5 0.0 25.0 1.349
21 40.0 0.994
22 122.1<x<125.3 15.0<y<65.0 30.0 0.99 Table 2.3: Flux densities in special points (T)
23 20.0 1.003 T-(D formulation
24 10.0 1.006
25 0.0 1.007

Table 2.1: Average flux densities in steel (T)
T-() formulation

No Item Specification
I Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
3 Gove•ning tions V. •,) V.(,)

__________________________T represented by edge elements
4 Solution variables 0
5 Gauge condition not applicable
6 Fraction of eometry 1/4
7 Technique for non-linear problem Incremental method

Convergence criterion mean ( A, / p,) <1% over all Gaussian points

max ( A; /p, ) <5% over all Gaussian points

3 Approximation method of B-H curve straight lines
Technique for open boundary problem truncation

9
10 Calculation method of magnetic field taking into account exciting current in governing

produced by exciting current equations directly
I I Property of coefficient matrix of linear equations symmetric. sparse
12 Solution method for linear equations ICCG

Convergence criterion for iteration method + 4flpr <i10-

13 Element type hexahedon
nodal element (20 nodes)
edge element (36 edges)

14 Number of elements 43,334
15 Number of nodes 206,991
16 Number of unknowns 182,517
17 Computer name: DECstation 5000-240

speed: 40 MIPS
main memory: 264 MB
precision of data: 64 bits

I CPU time total: 13,907 s
Table 2.4: Computational data, T-cD formulation
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A-edge formulation

This is a vector potential formulation without a gauge condition, using edge elements to
represent A [5]. The magnetic flux density is written as

B=VxA (7)

and the vector potential satisfies the differential equation

Vx(vVxA)=J . (8)

The vector potential is approximated with the aid of edge elements and, in order to make the
current density exactly divergence free, it is written in the form (6) with the same function T
represented by edge elements used as in the T-O formulation.

The average flux density values in the three sections of the channel, along the specified
line in the air and at the specified points are shown in Tables 3.1, 3.2 and 3.3. Some further
information concerning the computation is summarized in Table 3.4.

No. coordinates (m) _ _ B(T) No coordinates (mm) B(T)
y z _____ x y

1 0.0 1.344 26 10.0 0.0344
2 10.0 1.333 27 20.0 0.0202
3 20.0 1.299 28 30.0 0.0162
4 0,0<x<1.6 -25.0<y<25.0 30.0 1.241 29 40.0 0.0143
5 40.0 1.152 30 50.0 0.0130
6 50.0 1.015 31 60.0 20.0 55.0 0.0121
7 60.0 0.677 32 70.0 0.0108
8 2.1 0.270 33 80.0 0.00972
9 10.0 0.556 34 90.0 0.00573
10 20.0 0.640 35 100.0 0.00225
11 30.0 0.700 36 110.0 0.00144
12 40.0 0.749 Table 3.2: Flux density in air (T)
13 50.0 15.0<y<65.0 60.0<z<63.2 0.792
14 60.0 0.830 A-edge formulation
15 80.0 0.295 No coordinates (mn) B(T)
15 100.0 0.939 x Y z
17 110.0 0.945 37 2.2 15.1 60.1 1.52412 122.1 0.950 38 2.0 14.9 50.9 0.0339

19 60.0 0.951 39 1.5 0.0 55.0 0.467
20 50.0 0.954 40 1.5 0.0 25.0 1.267
21 40.0 0.959
22 122.1<x<125.3 15.0<y<65.0 30.0 0.964 Table 3.3: Flux densities in special points (T)
23 20.0 0.962 A-edge formulation
24 10.0 0.971
25 0.0 0.972

Table 3. 1: Average flux densities in steel (T)
A-edge formulation
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No Item Specification
1 Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
3 Governing equations V x (vV x A)-= J

4 Solution variables A
5 Gauge condition not imposed

6 Fraction of geometry 1/4
7 Technique for non-linear problem Incremental method

Convergence criterion mean( Au,/I,)< 1% overall Gaussian points

max ( Au, / p, ) < 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field taking into account exciting current in governing

produced by exciting current equations directly
11 Property of coefficient matrix of linear equations symmetric, sparse
12 Solution method for linear equations ICCG

Convergence criterion for iteration method I Ax +bj 2 
/1bfl2 < 1-7

13 Element type hexahedron
edge element (36 edges)

14 Number of elements 19,200
15 Number of nodes 84,083
16 Number of unknowns 225,728
17 Computer name: DECstation 5000-240

speed: 40 MIPS
main memory: 264 MB
precision of data: 64 bits
CPU time total: 50,412 s

Table 3.4: Computational data, A-edge formulation

Results

The computed average flux densities in the steel channels and the flux density in the air are
compared in Figs. 3 to 6 with the measured results [6]. Since the two scalar potential methods
yield practically identical results, only a single curve is shown for this case in each plot. It seems
that the values obtained by the vector potential formulation are somewhat nearer to the
measurements in the steel but the deviation between the scalar potential and measured results is
much less than it was reported in previous workshops for meshes with lower degrees of
refinement [7-10].
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Fig. 3: Average flux density against z, 0 < x < 1.6 umn, -25 < y < 25 mm
o o o o: measurement, -+------: scalar potential, _*.,_: vector potential
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Fig. 4: Average .ux density against x, 15 < y < 65 mm, 60 < z < 63.2 mm
o o o o: measurement, ---- , scalar potential, -*-*-: vector potential
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Fig. 5: Average flux density against z, 122.1 < x < 125.3 mm, 15 < y < 65 mm
o o o o: measurement, ---+---: scalar potential, -*-*-: vector potential
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Fig. 6: Flux density against x along the line y = 20 mm, z = 55 mm
o o o o: measurement, -+---+--: scalar potential, -*-*-: vector potential
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Abstract

Four solutions for the TEAM magnetostatic benchmark #13 are presented. The
problem was solved with the three dimensional volume integral code CORAL,
formerly called GFUNET. A series of models were solved with increasing
discretization in order to study the convergence and the charged CPU-time.

Problem Definition

TEAM benchmark problem #13 is a magnetostatic problem consisting of a coil and
steel plates. The geometry and all the material data is specified in details by
Nakata, Takahashi, Fujiwara and Olszewski /1/. The purpose is to compute the
magnetic flux density B along a given line outside the steel plates and in addition
the average flux across certain planes inside the steel. Measured data are also
provided. The geometry of the problem is shown in Fig. 1 and a schematic picture
of the measurements in Fig. 2.

The Volume Integral Code CORAL

The volume integral code CORAL is based on a decomposition of the magnetic
field strength H

H = H,(M,r') + H,(J,r').
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Hm is the field due to magnetization M and H. the field due to currents. A system
of integral equations is set up using a collocation approach and the line integrals
of H along the edges of tetrahedra are solved /2/. The theoretical background of
the formulation is explained in detail in reference /3/.

coil (dc 1000 and 3000 AT)
Y unit mimn

channel s

,_ _ - . .2 I I I -
o 00 coil I

S s~teel %jf0 3.2
-

20 t=.-0.5n [ '• ....... "Oj,,• 9 =L 10 -I-• 120 -11

25-L 150 1, 3.2 4.2 3.2

(a) front view

(b) plan view

Figure 1. Geometry of the TEAM problem #13. /1/

('erchc channel / .

center plate'-

Bi measured line

hcis(y=20, z=55) Beý
S1 o.- No. 26-36

- 0 X

Figure 2. Schematic picture of the measurements. /1/

The main subroutines of CORAL are the integral equation matrix generation, the
coil field computation routines, the solver, and the routines to update the
susceptibility data and the matrix during a nonlinear iteration.
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The first cycle of the nonlinear iteration, which sets up the matrix, takes always
more CPU-time than the others, since vectors

~r) = f(r- rl) dvijrt-r' 113

are generated only once and then stored on disc. These vectors are only geometry
dependent and they are needed to compute the contribution of each tetrahedron to
the scalar potential at each node. The so called paths /2/J3/ are also created only
once. They are, however, kept in the main memory all the time.

CORAL generates fairly large scratch files for the temporary data storage of the
C-vectors. Vector C is integrated at each node from all the tetrahedra of the
mesh. Thus the amount of disc space needed to store the C vectors is 3 x nodes x
tetrahedra x length of the variable (i.e. 4 if single precision, 8 if double precision
variables are used). At the moment, the size of the scratch file is the limiting
factor we have reached preventing us of running very large problems. For
instance using double precision variables a problem of 4950 tetrahedra and 2200
nodes generates a scratch file of 260 MB.

The integral equation matrix is diagonal dominant and nonsymmetric. Nothing
else is known. Thus the solver we have used is based on LU-decomposition and
backsubstitution. The lower and upper triangular are generated "in place" using
Crout's algorithm with partial pivoting. The LU-decomposition requires about
N'/3 operations and the backsubstitution stage N2/2 executions, where N is the
number of equations. Hence the solution time of large problems increases rapidly
and will cause problems in addition to the disc space needed.

At the moment the finite element mesh is generated by splitting hexahedra to five
tetrahedra. This means that the interior tetrahedron of each hexahedron has the
volume about twice as big as the others. It is not yet clear whether the bigger
elements dominate the results or not. In the near future the present mesh
generator will be changed to a 3D Delaunay tetrahedral mesh generator.

Results

The results we presented in Sorrento workshop /4/ were solved with a fairly small
workstation (24 MB SUN SPARCstation IPC), and hence it was dubious how the
results changed if the mesh is refined. However, the integral formulation already
seemed to share the same tendency as all other h-type formulations; the computed
flux across the surfaces inside the steel plates is higher than the measured values.
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The new results are obtained with a Kubota (Stardent) Titan 3010 computer. It
has allowed tripling the number of tetrahedra and doubling the number of
unknowns so far. The results seem to verify that with increasing discretization
the convergence of the flux inside the steel plates is very slow; no obvious
convergence was obtained. However, the magnetic field along the given line in air
remained about the same all the time as shown in Fig. 2.

There has been debate on the reasons for the possible excessive values of flux in
the steel plates. It is an interesting detail of the integral code that the only
approximation made is the approximation of magnetic field H in the space W1 (the
space spanned by the "edge elements"). In fact, the H is a vector field of W1,
which belongs to the class ker(curl); the closed line integrals of the field vanish.
Thus, if the flux is too high, the problem seems to be related directly to the type of
elements used.

The data of the four discretizations are shown in Table 1. The average flux in the
steel plates is shown in Fig. 3. and the field in air in Fig. 4.

Table 1.

Number of Number of nodes Number oftetrahedra equations

1 1505 720 718

2 3080 1104 1102

3 3705 1652 1650

4 3960 1380 1378

The charged CPU-time using the old version of CORAL varied between about 2000
to 42000 seconds. With the new version the solution time of the largest problem
was about 31000 CPU-seconds. The elapsed times of the main subroutines of the
new version are shown in Table 2.

Table 2.

Routine Charged CPU-time Percentage

Coil field computation 173.61 seconds 0.553 %

Generation of paths 6696.0 seconds 21.32 %

Matrix setup 1057.7 seconds 3.368 %

Solver 233.74 seconds/cycle 0.744 % / cycle
69 cycles 51.36 %
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Figure 3. Average flux in the steel plates. Case 1, diamonds; case 2, squares;

case 3, circles; case 4, triangles; measurements, filled circles.
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Figure 4. Magnetic field in air. Case 1, diamonds; case 2, squares; case 3,

circles; case 4, triangles; measurements, filled circles.
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Abstract

Users often raise the question of whether it is possible to
analyze eddy current problems with velocity effects within codes
that are not programmed to account for movement. This paper looks
at a technique for applying a conventional boundary element
technique to the analysis of a velocity induced eddy current by
altering the conductivity of the conducting medium as a function of
position. Results of the predicted B fields for v=0 m/s and v=10
m/s are compared to the analytical solution of a coil traveling
axially down the center of a conducting tube. Good agreement is
achieved; further refinement could be realized by iterating on
conductivity if necessary.

The Boundary Element Approach

The problem to be analyzed is shown in Figure 1. The coil is
excited at 50 Hz and is traveling down the pipe at velocity V. We
analyze the problem with V=O m/s and 10 m/s. The boundary element
approach (BEM) employed asks what fictitious free surface currents
Kf could be placed on the skin of this pipe to account for the
magnetization of the iron and the eddy currents. Actually 2 sets of
surface currents are employed. A skin of currents just inside the
pipe shell perimeter is used to represent the fields everywhere in
the pipe. Another set of currents just outside the shell models the
field in the air. The surface currents on the air side at r just
less than 14 mm, dictate the field in the air region 0<r<14 mm. The
surface currents just outside the skin at r=20 mm, dictate the
field for r>20 m. Once the surface currents are known, the magnetic
field is found simply from Biot-Savart's law.

For the eddy current problem without movement, the pertinent
equations for H and E are

Vxil=aA +J5  (1)

E= -j•A-VO ((2)

Writing (1) in terms of the vector potential A yields
With the specified gauge of (3), the curl curl equation can be
replaced by
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VxVxA-k2 Aiaj,÷•oVQ
where k 2 =jc gu , (3)
and V-A=pai.

V2+k A=-IiL19 . (4)

Pipe relative permeability - 50
Pipe conductivity - 5.0 R 06 zmho/m

....................................................... .. . . .. ---------------- ....

S. ....... ...... _.._.__._..._......L1 .............. ..

I 14Z-0 is at center
of the coilj

Translation of Coil, Velocity 10 m/8
Figure 1 Coil traveling axially down a conducting pipe with velocity V. All dimensions are in millinmetes.
The coil is excited at 50 Hz. Li and L2 are displaced 3 mm outside and inside the pipe respectively.

The integral soluti3n for the vector potential due to a source
current is ,2

A (r) =fG(r,.r') K. (r') dSI.
where

r'r') eIr-rl dS' (5)

Figure 2 helps to elucidate the approach. The fields in
regions 1 and 2 are represented in terms of the surface currents
and external impressed fields Hi and E1 as

RHiP 4H1 (Kf) (6)
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Region 1

• 4--

2-=1(K4) =-jA- (9)

It only remains to impose the boundary conditions on E and H which
are

ix, (A'-e1-) ..- flxf. (11)

Here A is the outward normal to region 1. Note that the condition/f-il|=O
is automatically insured by the use of the equivalent currents to
directly compute B. Employing these boundary conditions yields the
governing equations

i(•[•fG~k2.r~r')K• (')cS'-•lG~k1.rhzKr') I r S']--E•.OL ' ,(12)

Results
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-fK; (r') a ?G(k2,r, r')dS'+fK(r/')-- G(klrr') dS'
an' S (13)

+1/2 (K; (r) +K; (r)) =-AxHf

Equations (12) and (13) were applied to the problem both with
the pipe having no relative permeability and with p,=50. Both in
this case and those to follow, 179 linear boundary elements were
used, resulting in 366 unknowns. The field was predicted along the
lines Li and L2 of Figure 1. The radial and axial fields for the
nonmagnetic pipe with the coil traveling at zero velocity are shown
in Tables I and II.

Table I Radial Magnetic Fields
nongnetic pi , velocity = 0

z(mm) Br on Li Br on L1 Br on L2 Br on L2
analytic analytic

0 1.05e-08 9.42e-08

1.2 0.000184 0.000186 0.000824 0.000831

6 0.000688 0.000693 0.00345 0.00344

12 0.000627 0.000631 0.00119 0.0012

18 0.000396 0.000398 0.000532 0.000536

24 0.000237 0.000238 0.000264 0.000266

30 0.000143 0.000144 0.000142 0.000143

36 0.000089 0.00009 0.000081 0.000081

42 0.000057 0.000058 0.000049 0.000049

48 0.000038 0.000038 0.000031 0.000032

54 0.000026 0.000026 0.000021 0.000021

60 0.000018 0.000019 0.000014 0.000014

66 0.000013 0.000013 0.00001 0.00001

72 0.00001 0.00001 0.000007 0.000007

Table II Axial Magnetic Fields
nonmagetic pi•, velocity = 0

z Bz on Ll Bz on L1 Bz on L2 Bz on L2Analytic Analytic

1 0 0.000889 lt 0.00241
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1.2 0.000869 0.000876 0.00237 0.0022

6 0.000478 0.000481 0.000166 0.000109

12 0.00001 0.000004 0.000676 0.000681

18 0.000143 0.000144 0.000477 0.00048

24 0.000149 0.00015 G.000315 0.000318

30 0.000124 0.000125 0.000211 0.000212

36 0.000097 0.000098 0.000144 0.000145

42 0.000075 0.000075 0.000101 0.000102

48 0.000058 0.000058 0.000073 0.000074

54 0.000045 0.000045 0.000055 0.000055

60 0.000035 0.000036 0.000041 0.000042

66.00001 0.000028 0.000028 0.000032 0.000033

72 0.000023 0.000023 0.000025 0.000026

As expected, the ferromagnetic pipe with p,=50 has a
diminished axial field on Li outside the pipe. The radial and axial
magnetic fields are shown compared to the analytic solution in
Tables III and IV.

Table III Radial Magnetic Fields
magnetic pipe, velocity = 0

z Br on Li Br on Li Br on L2 Br on L2
analytic analytic

0 7.94e-07 5.96e-07

1.2 0.000015 0.000017 0.00131 0.00132

6 0.00006 0.000065 0.00539 0.0054

12 0.000062 0.000068 0.00154 0.00156

18 0.000048 0.000054 0.000515 0.000525

24 0.000037 0.000042 0.00018 0.000185

30 0.000029 0.000034 0.000064 0.000066

36 0.000024 0.000028 0.000023 0.000023

42 0.00002 0.000024 0.000008 0.000009

48 0.000017 0.000021 0.000003 0.000004

54 0.000015 0.000018 0.000001 0.000002
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60 0.000013 0.000016 5.62e-07 6.65e-07

66.00001 0.000012 0.000015 3.61e-07 3.24e-07

72 0.00001 0.000013 2.87e-07 4.38e-07

Table IV Axial Magnetic Fields
magnetic pipe, velocity = 0

z Bz on Ll Bz on Ll Bz on L2 Bz on L2
Analytic Analytic

0 0.000087 0.000459

1.2 0.000085 0.000093 0.000449 0.00064

6 0.000055 0.000061 0.000306 0.000335

12 0.000016 0.000018 0.000079 0.000088

18 0.000004 0.000001 0.000029 0.000033

24 0.000006 0.000005 0.000012 0.000016

30 0.000007 0.000006 0.000007 0.00001

36 0.000007 0.000006 0.000005 0.000008

42 0.000006 0.000006 0.000004 0.000007

48 0.000006 0.000006 0.000004 0.000006

54 0.000005 0.000005 0.000003 0.000005

60 0.000005 0.000005 0.000003 0.000005

66.00001 0.000005 0.000005 0.000003 0.000005

72 0.000004 0.000004 0.000003 0.000004

Velocity Effects

The remaining question is how to account for velocity effects.
One alternative is to redefine the vector potential in terms of the
axial velocity v of the pipe as

A=Ae (2 L) (14)

The governing equation becomes
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where (15)
a 2=(J X) 2+ijiia

Solution proceeds by solving for A.

The question in opening this paper seeks a solution without
reformulating the program, i.e., using the same software as in the
zero velocity case. We propose to trick the problem into thinking
it is moving by altering the conductivity in front and to the rear
of the coil. The defining vector potential equation with velocity
is (2 a l A +aA\
V 2 A-pv-+-=0. (16)

In cylindrical coordinates, this becomes

1 a LaA+_±A _ A Ao AA A
p (17)

Terms 3 and 4 in (17) both share the common multiplier a. One need
merely to augment the conductivity to account for the effect of the
velocity (term 3 in (17)). The steps for incorporating velocity are
as follows:
1) Work the problem assuming v=O. Get A and -L along the tube

az
(wherever eddy currents exist)

2) Examine the ratio (v-C• j.A

3) Increase the conductivity by the ratio
8A.!

=Gor~vgiz 4 -- +Jwi
DOMW=QZ jcaA

4). Repeat if necessary to refine the value of A and a.
az-

Note that if the software used forces an entry of real conductivity
as most do, the phase information of your final answer will not be
correct. You are forced to use the absolute value of the ratio in
step 3, but the magnitude should be correct.

Steps 1-3 were performed for problem 9 for the velocities
v=1,10, and 100 m/s. The conductivity profiles along the tube for
these three velocities are shown in Figure 3, Figure 4, and
Figure 5 respectively. Note that as the velocity is increased, the
conductivity becomes more symmetric, indicating the overwhelming
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Conductivity vs Position
v=1 M/s
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P~we 3 Conductivity in the tube for the v = 1 ml/ velocity case.

Conductivity vs Position
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Pkw 4 Conductivity in the pipe for the v= 10 mls velocity case.

influence of the v~r term compared to jaA.
8z

Results for the vf1i0 x/s Velocity case

As seen in Figure 3, the effect of the velocity on the
conductivity at v=fl m/s is slight. The analytic results differed
generally only in the second decimal place from the analytic
results for the v=O m/s study. The v=1f0 m/s case was on the other
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Conductivity vs Position
v=100 M/s

300
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•. 15;0
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z (m)

Figure 5 Conductivity in the tube for the v= 100 m/s velocity case.

Radial B Field
6.OE-03 -

S~L1 predicted

5.OE-03 -

LI analytic

4.OE-03
L2 predicted

S3.OE-03 L2 analytic

2.0E-03

1.0E-03-

O.OE+O0 a
0 15 30 45 60 75

Position along axis (mrnm)

Figure 6 Radial field for the magnetic pipe, v = 10 mls.

hand quite dissimilar. It was thought that this would prove a good
testing ground for the theory. Shown in Figure 6 is the radial
field predicted along Li and L2 with its analytic counterpart. The
tabular comparison is shown in Table V.
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Table V Radial Field Predictions
v=10 m/s, permeability = 50

Z Br on Li Br on L1 Br on L2 Br on L2
analytic analytic

0 0.000004 0 0.000007 0

1.2 0.000027 0.000059 0.000013 0.00106

6 0.000057 0.000055 0.005381 0.00525

12 0.000032 0.000028 0.001499 0.00157

18 0.00002 0.000005 0.000492 0.000561

24 0.000014 0.000023 0.00017 0.000217

30 0.000011 0.000031 0.000059 0.000089

36 0.000009 0.000032 0.000021 0.000039

42 0.000007 0.000031 0.000007 0.000019

48 0.000006 0.000028 0.000003 0.00001

54 0.000006 0.000026 8.27e-07 0.000006

60 0.000005 0.000023 2.42e-07 0.000003

66.00001 0.000004 0.000021 6.19e-08 0.000002

72 0.000004 0.000019 5.93e-08 0.000002

Axial B Field
6.OE-04 -

LI predicted
5.0 E--0 4

Li analytic

4.OE-04 •
L2 predicted

", 3.OE-04 L2 analytic

2.0E--04

1.OE-04

O.OE+00
0 15 30 45 60 75

Position along axis (mm)

Figure 7 Axial magnetic field for the magnetizable pipe with coil traveling at v = 10 m/s.
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By comparison Figure 7 shows the axial B field predictions
along with those obtained analytically. In both cases some error is
seen in the smallest component of the field, but the resultant is
very close. Table Vi displays this data along with the analytic
predictions.

Table VI Axial Field Predictions
v=10 m/s, permeability = 50

z Bz on Ll Bz on Ll Bz on L2 Bz on L2
analytic analytic

0 0.000072 0.00042

1.2 0.000068 0.000059 0.000409 0.000506

6 0.00003 0.000055 0.000293 0.000522

12 0.000011 0.000028 0.00008 0.000259

18 0.000007 0.000005 0.000025 0.000146

24 0.000006 0.000023 0.000007 0.000089

30 0.000004 0.000031 0.000002 0.000057

36 0.000004 0.000032 0.000001 0.000039

42 0.000003 0.000031 0.000001 0.000028

48 0.000002 0.000028 0.000001 0.000021

54 0.000002 0.000026 0.000001 0.000016

60 0.000002 0.000023 0.000001 0.000013

66.00001 0.000002 0.000021 0.000001 0.000011

72 0.000002 0.000019 9.20e-07 0.000009

The accuracy suggests that the method is quite effective.

Conclusions

Altering the conductivity to account for velocity effects is
a relatively simple technique for accounting for velocity when the
code does not implicitly have such capability. In this example, the
conductivity was altered in the tube in regions to be piecewise
continuous. Only 14 different conductivities were used to model

Figure 4. Furthermore the ratio vnev=aorigina JiA was computed

in the center of the pipe at the radial line r=17 mm. In reality 3
further modifications would be necessary to get precise results.
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1) Alter the conductivity to reflect radial changes in the ratio

°"ev=°43A jwA "wA.

2). Model a continuous change in conductivity as suggested by
Figure 4.
3). Iterate on the solution to refine the conductivities with a

closer estimate of 1=hg jwaA I . after the first iteration.

The accuracy of the answers reflects the fact that the ratio
does not change significantly as one varies the velocity. Also
reasonable predictions of the fields are realized with a rather
crude modeling of the conductivity.

If a complex conductivity is known, it can be inserted to
correctly account for the vaA term. Since this is unknown aaz
priori, one is forced to iteratively approached its corect value.
The problem is worked first assuming it is zero, and then updating
the value as suggested above. The accuracy of the results
summarized below were obtained in a single iteration. They enable
the user to obtain a close result without reformulating the Green's
function integral. Many users do not have access to the code to
make these alterations even if they could formulate the changes.
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